

AKENERJİ ELEKTRİK ÜRETİM A.Ş.

2025 CDP Corporate Questionnaire 2025

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Read full terms of disclosure

.

Contents

C1. Introduction	8
(1.1) In which language are you submitting your response?	
(1.2) Select the currency used for all financial information disclosed throughout your response.	8
(1.3) Provide an overview and introduction to your organization.	8
(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting	years 9
(1.4.1) What is your organization's annual revenue for the reporting period?	10
(1.5) Provide details on your reporting boundary.	10
(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?	11
(1.7) Select the countries/areas in which you operate.	13
(1.16) In which part of the electric utilities value chain does your organization operate?	13
(1.16.1) For your electricity generation activities, provide details of your nameplate capacity and electricity generation specifics for each technology employed	
(1.24) Has your organization mapped its value chain?	20
(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?	2
C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities	23
(2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your envir dependencies, impacts, risks, and opportunities?	onmental
(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?	25
(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?	25
(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.	
	25
(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?	
(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?	39
	40
(2.3) Have you identified priority locations across your value chain?	

C3. Disclosure of risks and opportunities	51
(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?	
(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.	
(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks	59
(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does represent?	
(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?	63
(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?	64
(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?	64
(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?	64
(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.	
(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities	71
C4. Governance	73
(4.1) Does your organization have a board of directors or an equivalent governing body?	
(4.1.1) Is there board-level oversight of environmental issues within your organization?	74
(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details the board's oversight of environmental issues.	
(4.2) Does your organization's board have competency on environmental issues?	80
(4.3) Is there management-level responsibility for environmental issues within your organization?	81
(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals)	82
(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?	87
(4.6) Does your organization have an environmental policy that addresses environmental issues?	88
(4.6.1) Provide details of your environmental policies.	89
(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?	91
(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negative impact the environment?	ely) 92

	the reporting year?the reporting year?	
	(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations other intermediary organizations or individuals in the reporting year.	
	(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?	97
	(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.	
C	5. Business strategy	100
	(5.1) Does your organization use scenario analysis to identify environmental outcomes?	
	(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.	
	(5.1.2) Provide details of the outcomes of your organization's scenario analysis.	107
	(5.2) Does your organization's strategy include a climate transition plan?	110
	(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?	112
	(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.	112
	(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.	115
	(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?	117
	(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?	117
	(5.5.7) Provide details of your organization's investments in low-carbon R&D for your sector activities over the last three years.	118
	(5.7) Break down, by source, your organization's CAPEX in the reporting year and CAPEX planned over the next 5 years.	121
	(5.7.1) Break down your total planned CAPEX in your current CAPEX plan for products and services (e.g. smart grids, digitalization, etc.).	122
	(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated tre	
	(5.10) Does your organization use an internal price on environmental externalities?	125
	(5.10.1) Provide details of your organization's internal price on carbon.	125
	(5.11) Do you engage with your value chain on environmental issues?	128
	(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?	130
	(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?	130
	(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?	131
	(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measure	es in 133

	(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.	136
	(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.	139
(C6. Environmental Performance - Consolidation Approach	.142
	(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data	142
(C7. Environmental performance - Climate Change	.144
	(7.1) Is this your first year of reporting emissions data to CDP?	
	(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?	
	(7.1.2) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?	144
	(7.1.3) Have your organization's base year emissions and past years' emissions been recalculated as a result of any changes or errors reported in 7.1.1 and/or 7.1.2?.	145
	(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.	145
	(7.3) Describe your organization's approach to reporting Scope 2 emissions.	146
	(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?	
	(7.5) Provide your base year and base year emissions.	147
	(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?	155
	(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?	157
	(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.	159
	(7.8.1) Disclose or restate your Scope 3 emissions data for previous years.	169
	(7.9) Indicate the verification/assurance status that applies to your reported emissions.	176
	(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.	176
	(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.	177
	(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.	179
	(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?	180
	(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.	
	(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emission figure or a market-based Scope 2 emission figure or a market-based Scope 2 emission figure or a market-based Scope 2 emission figure or a market-based Scope 2 emission	
	(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?	187

(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?	187
(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP)	187
(7.15.3) Break down your total gross global Scope 1 emissions from electric utilities value chain activities by greenhouse gas type.	189
(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.	192
(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.	193
(7.17.3) Break down your total gross global Scope 1 emissions by business activity.	193
(7.19) Break down your organization's total gross global Scope 1 emissions by sector production activity in metric tons CO2e.	193
(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response	194
(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?	194
(7.29) What percentage of your total operational spend in the reporting year was on energy?	194
(7.30) Select which energy-related activities your organization has undertaken.	195
(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.	195
(7.30.6) Select the applications of your organization's consumption of fuel.	197
(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.	198
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.	203
(7.33) Does your electric utility organization have a transmission and distribution business?	204
(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any addintensity metrics that are appropriate to your business operations.	
(7.46) For your electric utility activities, provide a breakdown of your Scope 1 emissions and emissions intensity relating to your total power plant capacity and gen during the reporting year by source.	
(7.52) Provide any additional climate-related metrics relevant to your business.	208
(7.53) Did you have an emissions target that was active in the reporting year?	210
(7.53.2) Provide details of your emissions intensity targets and progress made against those targets.	210
(7.54) Did you have any other climate-related targets that were active in the reporting year?	214
(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.	215
(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.	
(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.	220
(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.	220
(7.55.3) What methods do you use to drive investment in emissions reduction activities?	222

(7.58) Describe your organization's efforts to reduce methane emissions from your activities.	224
(7.74) Do you classify any of your existing goods and/or services as low-carbon products?	224
(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.	224
(7.79) Has your organization retired any project-based carbon credits within the reporting year?	227
C9. Environmental performance - Water security	229
(9.1) Are there any exclusions from your disclosure of water-related data?	
(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?	229
(9.2.1) For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?	237
(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reare they forecasted to change?	
(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how the change.	
(9.2.7) Provide total water withdrawal data by source.	242
(9.2.8) Provide total water discharge data by destination.	246
(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.	248
(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependent and opportunities?	
(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year	253
(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?	285
(9.5) Provide a figure for your organization's total water withdrawal efficiency.	288
(9.7) Do you calculate water intensity for your electricity generation activities?	288
(9.7.1) Provide the following intensity information associated with your electricity generation activities.	288
(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?	291
(9.14) Do you classify any of your current products and/or services as low water impact?	291
(9.15) Do you have any water-related targets?	292
(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories	292
(9.15.2) Provide details of your water-related targets and the progress made.	294
C11. Environmental performance - Biodiversity	297
(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?	297

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?	297
(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?	297
C13. Further information & sign off	301
(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assuthird party?	•
(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?	301
(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is option scored.	
(13.3) Provide the following information for the person that has signed off (approved) your CDP response.	303
(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website	304

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

✓ USD

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

✓ Publicly traded organization

(1.3.3) Description of organization

Akenerji Elektrik Üretim A.Ş.(hereinafter referred to as Akenerji) established in 1989 as Türkiye's first electricity generation company with autoproducer group status. Akenerji operates as an independent power producer since 2005 and has grown to become a leading player in Türkiye's energy sector by 2021. Through a strategic partnership with Akkök Holding and CEZ Group, we have an installed capacity of 1,224 MW, equivalent to approximately 2.5% of Türkiye's total energy demand. Our gross electricity production is 3,968,772.6 MWh. This substantial capacity highlights Akenerji's crucial role in meeting national energy needs. Our diverse portfolio, which includes 1 natural gas combined cycle, 1 wind power plant and 7 hydroelectric power plants, ensures robust diversity in energy sources and geographical coverage. Our strategic investments, driven by our commitment to the importance of renewable energy sources in combating climate change and considering Türkiye's long-term energy policies, have enabled us to maintain our competitive position in 2024. Through the commissioning of 1 wind power plant and 7 hydroelectric power plants between 2009 and 2012, our company achieved a renewable capacity of 320 MW by the end of 2024, enabling it to meet 26% of its total installed capacity from renewable sources. With planned investments in a 198 MW capacity hydroelectric power plant and a 6.21 MW capacity increase in the wind power plant, our renewable percentage will rise from 26% to 37%. Additionally, we are working on developing strategic investment plans for the installation of hybrid power plants at Erzin NGCCPP and Burç Bendi HPP. As Akenerji, we are fully aware of our responsibility to mitigate climate change. In 2011, we were one of the European Energy Exchange, and we are an active member of the BIST Sustainability Index. We are now planning to implement emission reduction technologies to minimize

environmental and societal risks associated with our operations. Our proactive approach and adherence to international standards drive our efforts in sustainable energy, ensuring a future focused strategy. As an active member of the UN Global Compact, Akenerji has collaborated with the Sustainability Committee to develop its 2021-2025 sustainability strategies, reviewing the needs and expectations of internal stakeholders to update priority areas which support the targets of the United Nations 17 SDGs. Additionally, we focus on protecting natural life and preventing environmental pollution in all operational processes, ensuring maximum energy production with minimal resource use. In 2024, we continue to assess climate change risks and opportunities while setting our strategic goals. Although Akenerji is not a signatory of the UN Principles for Responsible Investment, we actively incorporate its six principles into our investment decisions. We prioritize ESG policy adherence, transparently communicate long-term ESG decisions to shareholders, and ensure compliance with the UN Global Compact across all our operations. We also set expectations for our service providers to meet our ESG standards and participate in platforms like BIST Refinitiv to enhance our practices. Through a 'Comply or Explain' approach, we annually report on our progress, raising awareness among a broader group of stakeholders. Akenerji engages with a broad range of stakeholders, including employees, customers, creditors, investors, regulatory bodies, suppliers, local communities, authorities, society, and the media, through various dialogue platforms. These platforms include integrated management systems, the "We Are the Energy" Employee Suggestion System, customer satisfaction surveys, Environmental Impact Assessment reports, workshops, and more. Moreover, Akenerji has participated in the CDP Climate Change program since 2010 and has prepared annual sustainability reports according to GRI Standards since 2012. All of Akenerji's power plants have had ISO 9001:2015 Quality, ISO 45001:2018 Occupational Health and Safety, ISO 14001:2015 Environment Management Systems, and ISO 50001:2018 Energy Management System certifications since 2010. Akenerji, with 313 employees, integrates sustainability-focused activities into its stakeholder engagement. In 2024, we received the Stevie Award in the Technology in Human Resources category for our innovative use of technology in HR, our corporate social responsibility innovation, and our success in diversity. We have a Sustainability Committee to oversee ESG activities, create and monitor necessary policies, and ensure compliance with the Sustainability Principles Compliance Framework. Our governance structure, overseen by the Board of Directors, supports the implementation of ESG initiatives and the development and monitoring of related policies. [Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

(1.4.1) End date of reporting year

12/30/2024

(1.4.2) Alignment of this reporting period with your financial reporting period

Select from:

Yes

(1.4.3) Indicate if you are providing emissions data for past reporting years

Select from:

✓ Yes	
(1.4.4) Number of past reporting years you will be providing	Scope 1 emissions data for
Select from: ✓ 3 years	
(1.4.5) Number of past reporting years you will be providing	Scope 2 emissions data for
Select from: ☑ 3 years	
(1.4.6) Number of past reporting years you will be providing	Scope 3 emissions data for
Select from: ☑ 3 years [Fixed row]	
(1.4.1) What is your organization's annual revenue for the re	porting period?
775055594.42	
(1.5) Provide details on your reporting boundary.	
	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?

[Fixed row]

Select from:

✓ Yes

(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?
ISIN code - bond
(1.6.1) Does your organization use this unique identifier?
Select from: ☑ No
ISIN code - equity
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
TRAAKENR91L9
CUSIP number
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ No
Ticker symbol
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes

(1.6.2) Provide your unique identifier

"AKENR" has traded on Borsa İstanbul since 2000.

SEDOL code

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

LEI number

(1.6.1) Does your organization use this unique identifier?

Select from:

Yes

(1.6.2) Provide your unique identifier

7890006JO4YATIQAG941

D-U-N-S number

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

Other unique identifier

(1.6.1) Does your organization use this unique identifier?

Select from:

(1.7) Select the countries/areas in which you operate.

Select all that apply

✓ Turkey

(1.16) In which part of the electric utilities value chain does your organization operate?

Electric utilities value chain

☑ Electricity generation

(1.16.1) For your electricity generation activities, provide details of your nameplate capacity and electricity generation specifics for each technology employed.

Coal - Hard

(1.16.1.1) Own or control operations which use this power generation source

Select from:

✓ No

(1.16.1.5) Comment

Not applicable.

Lignite

(1.16.1.1) Own or control operations which use this power generation source

Select from:

(1.16.1.5) Comment
Not applicable.
Oil
(1.16.1.1) Own or control operations which use this power generation source
Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Gas
(1.16.1.1) Own or control operations which use this power generation source
Select from: ✓ Yes
(1.16.1.2) Nameplate capacity (MW)
904
(1.16.1.3) Gross electricity generation (GWh)
3260.35
(1.16.1.4) Net electricity generation (GWh)
3190.26
(1.16.1.5) Comment

We have one natural gas combined cycle power plant located in the Erzin district of Hatay province in Türkiye, which started operating in 2014. Erzin Natural Gas Combined Cycle Power Plant has three units with a total capacity of 904 MW, consisting of two gas turbines each with a capacity of 292 MW and one steam turbine with a capacity of 320 MW. Using advanced technology and high efficiency, the plant significantly contributes to Türkiye's energy needs. In 2024, the plant generated around 3,260,347 MWh of gross electricity, which is about 1.00% of Türkiye's total electricity consumption for the year. This contribution is crucial for Türkiye's energy supply security as it helps diversify energy sources, making the country's energy system more stable and reliable.

Sustainable biomass

1		4 -	4		`	<u> </u>							• _			. • .				. • .							• _			
И		16		1)	Own	or	ഭവ	ntro	l O	ne	rai	'IOI	ns	W	nıc	'n	11190	a ti	nis	n	าพ	er	ae	ne	rai	וחוי	n 🧐	ะดม	rce
N	ш.	ш	αц	• 4	,		$\mathbf{v}_{\mathbf{L}}$	00		ш	PC		10	ш		1110	ш	<u>u</u>	9 4	ш		<u> </u>	OI.		ше	Щ	10		JUU	

Select from:

✓ No

(1.16.1.5) Comment

Not applicable.

Other biomass

(1.16.1.1) Own or control operations which use this power generation source

Select from:

✓ No

(1.16.1.5) Comment

Not applicable.

Waste (non-biomass)

(1.16.1.1) Own or control operations which use this power generation source

Select from:

(1.16.1.5) Comment
Not applicable.
Nuclear
(1.16.1.1) Own or control operations which use this power generation source
Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Fossil-fuel plants fitted with carbon capture and storage
(1.16.1.1) Own or control operations which use this power generation source
Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Geothermal
(1.16.1.1) Own or control operations which use this power generation source
Select from:

✓ No

(1.16.1.5) Comment

Not applicable.

Hydropower

(1.16.1.1) Own or control operations which use this power generation source

Select from:

Yes

(1.16.1.2) Nameplate capacity (MW)

292

(1.16.1.3) Gross electricity generation (GWh)

625.04

(1.16.1.4) Net electricity generation (GWh)

615.43

(1.16.1.5) Comment

As Akenerji, we operate seven hydroelectric power plants located in various regions across Türkiye, emphasizing our commitment to renewable energy. These facilities include Bulam HPP with a total capacity of 7 MW, Burç Bendi HPP with 28 MW, Uluabat HPP with 100 MW, Feke II HPP with 70 MW, Feke I HPP with 30 MW, Gökkaya HPP with 30 MW, and Himmetli HPP with 27 MW. Bulam, Burç Bendi, Uluabat, and Feke II HPPs were commissioned in 2010 while Feke I, Gökkaya, and Himmetli HPPs were commissioned in 2012, enhancing the diversity of our renewable energy portfolio. The total installed capacity of our HPPs is 292 MW, which constitutes approximately 24% Akenerji's overall installed capacity of 1,224 MW. In 2024, these hydroelectric power plants produced a gross electricity of 625,04 GWh. This significant contribution from renewable hydroelectric power supports both Türkiye's renewable energy goals as well as the stability and reliability of our energy infrastructure. In line with our ongoing commitment to renewable energy, we are planning a substantial investment in a 198 MW hydroelectric power project, aimed at further contributing to Türkiye's renewable installed capacity targets and national objectives.

Wind

(1.16.1.1) Own or control operations which use this power generation source

Sel	ect	from:	
-	-c	,, O,,,,	

Yes

(1.16.1.2) Nameplate capacity (MW)

28

(1.16.1.3) Gross electricity generation (GWh)

83.39

(1.16.1.4) Net electricity generation (GWh)

81.78

(1.16.1.5) Comment

Ayyıldız Wind Power Plant was commissioned in 2009 and is located in the Bandırma district of Balıkesir, Türkiye. The power plant currently has a capacity of 28 MW. In 2024, it achieved a gross electricity generation of 81,783 MWh. We have initiated efforts to increase the capacity of Ayyıldız Wind Power Plant by 6.2 MW, starting with the Environmental Impact Assessment process. Upon completion, the plant's increased capacity will enhance our renewable energy contribution and deliver a greater supply of clean energy to Turkey's national grid.

Solar

(1.16.1.1) Own or control operations which use this power generation source

Select from:

✓ No

(1.16.1.5) Comment

Not applicable.

Marine

(1.16.1.1) Own or control operations which use this power generation source

Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Other renewable
(1.16.1.1) Own or control operations which use this power generation source
Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Other non-renewable
(1.16.1.1) Own or control operations which use this power generation source
Select from: ☑ No
(1.16.1.5) Comment
Not applicable.
Total
(1.16.1.2) Nameplate capacity (MW)

(1.16.1.3) Gross electricity generation (GWh)

3968.77

(1.16.1.4) Net electricity generation (GWh)

3887.47

(1.16.1.5) Comment

We operate a diverse portfolio of power plants across Türkiye, consisting of one natural gas combined cycle power plant, seven hydroelectric power plants, and one wind power plant. With a total installed capacity of 1,224 MW, our facilities are strategically located in different regions and contribute to the stability and reliability of the national energy grid. Erzin Natural Gas Combined Cycle Power Plant, with a capacity of 904 MW, plays a significant role in meeting Türkiye's energy needs. In addition, our seven hydroelectric power plants, with a combined capacity of 292 MW, and Ayyıldız Wind Power Plant, with a current capacity of 28 MW, reflect our strong commitment to renewable energy. Together, these facilities demonstrate our dedication to diversifying energy sources, supporting Türkiye's renewable energy goals and strengthening energy supply security. [Fixed row]

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

✓ Upstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

☑ Tier 1 suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

▼ Tier 4+ suppliers

(1.24.7) Description of mapping process and coverage

At Akenerji, we recognize that value chain management is of critical importance for ensuring efficiency, sustainability, and risk management across all stages from the supply chain to electricity generation processes and stakeholder engagement. Under the leadership of our Sustainability Committee, we systematically assess environmental dependencies, impacts, risks, and opportunities both within our direct operations and throughout our value chain as part of our value chain mapping efforts. As stated in our Sustainability Policy, data on the ESG practices and performance of our Tier 1 suppliers are collected in detail through both our internal systems and direct supplier engagement. Based on the sustainability criteria outlined in supplier assessment forms, performance evaluations are conducted, and decisions on whether to continue collaboration are shaped by the level of compliance with these criteria. To mitigate risks associated with resource scarcity and regulatory changes, priority is given to sustainable procurement practices, which hold strategic importance in maintaining our electricity generation capacity. To enhance the accuracy and comprehensiveness of the mapping process, different methods such as geospatial analysis and stakeholder engagement are employed. As of the end of 2024, we plan to expand the scope of supplier tiers and carry out a more holistic mapping study.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

(1.24.1.1) Plastics mapping

Select from:

✓ No, but we plan to within the next two years

(1.24.1.5) Primary reason for not mapping plastics in your value chain

Select from:

✓ Not an immediate strategic priority

(1.24.1.6) Explain why your organization has not mapped plastics in your value chain

Akenerji is committed to environmental sustainability and adheres to Regulation on Zero Waste (Sıfır Atık Yönetmeliği) of Türkiye by conducting comprehensive waste segregation and implementing effective waste reduction initiatives. While we appropriately manage our waste and have established unit level waste reduction

targets, mapping plastics within our direct operations or value chain is not an immediate strategic priority. Our core business operations, which involve the generation of electricity from natural gas, hydroelectric, and wind power plants do not involve the production, commercialization, use, or disposal of plastics. Consequently, we have not conducted a mapping analysis for plastics within our operations or value chain. Although plastics are not an operational priority for us, as a subsidiary of Akkök Holding, a signatory of the Business Plastics Initiative, Akenerji is committed to several specific actions. By 2025, we will implement practical training modules on waste segregation at our headquarters. Additionally, data on the annual purchase of plastics and the amount of plastic waste sent for recycling at our power plants will be systematically recorded and monitored. Our goal is to completely eliminate single-use plastics such as cups, straws, and bottles at our power plants by the end of 2030, and in line with the zero plastic waste target for 2030, we plan to achieve annual reductions in plastic waste by predetermined rates until 2025. Although plastics are not a primary focus operationally, our sensitivity to this issue is evident through our support for both international and national organizations, including the Business Plastics Initiative. We are committed to assessing and addressing any emerging needs related to plastics mapping as part of our ongoing environmental sustainability efforts. Our waste management practices are in strict compliance with the Regulation on Zero Waste, and we make effort to minimize waste generation through various sustainability initiatives. Our current efforts focus on investing in new renewable energy projects, and reducing greenhouse gas emissions. We continuously monitor and evaluate our environmental impact, ensuring adherence to regulatory requirements. If future assessments indicate the need for plastics mapping within our operations, we will implement the necessar

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

0

(2.1.3) To (years)

2

(2.1.4) How this time horizon is linked to strategic and/or financial planning

In the short term, we define the time horizon as 0 to 2 years and focus on risks and opportunities that can directly impact our operational processes and financial performance in the near future. This includes physical risks such as water scarcity, droughts, and extreme weather events, which can cause damage to our power plants and lead to electricity generation interruptions. Regulatory risks are also considered short-term, particularly the anticipated implementation of the national emissions trading system, which may result in significant additional cost obligations. The use of this timeframe is closely linked to our strategic planning, as it allows us to respond rapidly to sudden operational changes and emerging regulatory requirements. Risk management strategies developed for the short term are integrated into our corporate planning to enhance both operational efficiency and organizational resilience. These include energy efficiency projects and water management strategies, which is not only mitigate risks but also create opportunities for improved performance and cost savings. By embedding short-term analysis into our decision-making, we ensure agility and preparedness in addressing immediate environmental dependencies, risks, and opportunities.

Medium-term

(2.1.1) From (years)

2

(2.1.3) To (years)

(2.1.4) How this time horizon is linked to strategic and/or financial planning

In the medium term, defined as 2 to 5 years, we mainly assess the effects of the low carbon energy transition and climate related regulatory changes. These include the potentially high costs associated with decarbonizing our portfolio and the risks linked to the introduction of new technologies, such as challenges in effective human resource management and difficulties employees may face in adapting to transformation processes. In addition, we evaluate the risk of tightening climate-related regulations, which could result in declining market share, reduced revenues, and increased costs. Alongside transition risks, climate change related physical risks remain relevant within this timeframe, as water scarcity, droughts, and extreme weather events may lead to physical damage to the generation and equipment. To address these risks, we integrate strategic investments and innovative solutions into our medium-term planning. From a financial perspective, our planning and budgeting processes account for possible water and energy market fluctuations, as well as the cost implications of carbon pricing and new regulations. These financial considerations are managed through budget studies that are aligned with our corporate risk management strategies.

Long-term

(2.1.1) From (years)

5

(2.1.2) Is your long-term time horizon open ended?

Select from:

✓ No

(2.1.3) To (years)

20

(2.1.4) How this time horizon is linked to strategic and/or financial planning

In the long term (5-20 years), we focus on risks and opportunities that will shape both the future of the energy sector and our own business model. These include the impacts of climate change, the sustainable management of water resources, and structural changes driven by low carbon technological innovation and market dynamics. Long term scenarios guide the development of our strategic roadmap and inform major investment decisions. Hence, we continuously evaluate and shape our portfolio to strengthen its resilience against environmental and economic shifts. Our priorities in this horizon include investing resource efficient energy generation, advancing the use of innovative low-carbon technologies, and expanding our renewable energy capacity. We place particular emphasis on sustainable practices in water and energy management, as well as achieving significant reductions in carbon emissions. To achieve these goals, we are planning to utilize advanced monitoring systems, digitalization, and innovative technologies to ensure more effective management of environmental risks and climate-related challenges.

Sustainable growth is at the core of our long-term planning. Accordingly, we design financial models aligned with sustainability principles and channel investments toward renewable energy projects that strengthen our contribution to the low-carbon transition.

[Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

Process in place	Dependencies and/or impacts evaluated in this process
Select from: ✓ Yes	Select from: ☑ Both dependencies and impacts

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in hiace		Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ☑ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- ✓ Dependencies
- Impacts
- ✓ Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

✓ More than once a year

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

☑ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ✓ Site-specific
- ✓ Local
- National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

- ☑ Environmental Impact Assessment
- ☑ ISO 14001 Environmental Management Standard

Databases

☑ Regional government databases

Other

- ✓ Scenario analysis
- ✓ Desk-based research
- ✓ External consultants
- ✓ Materiality assessment
- ✓ Internal company methods

☑ Partner and stakeholder consultation/analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ✓ Drought
- ✓ Landslide
- ✓ Heat waves
- ☑ Heavy precipitation (rain, hail, snow/ice)
- ✓ Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

- ✓ Heat stress
- ✓ Water stress
- ✓ Changing wind patterns
- ▼ Temperature variability
- ✓ Water quality at a basin/catchment level

☑ Storm (including blizzards, dust, and sandstorms)

- ✓ Precipitation or hydrological variability
- ✓ Increased severity of extreme weather events
- ☑ Water availability at a basin/catchment level
- ☑ Changing temperature (air, freshwater, marine water)
- ☑ Changing precipitation patterns and types (rain, hail, snow/ice)

28

Policy

- ✓ Carbon pricing mechanisms
- ☑ Changes to international law and bilateral agreements
- ☑ Changes to national legislation

Market

- ✓ Availability and/or increased cost of raw materials
- ✓ Uncertainty in the market signals

Reputation

- ✓ Increased partner and stakeholder concern and partner and stakeholder negative feedback
- ✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

- ✓ Dependency on water-intensive energy sources
- ✓ Transition to lower emissions technology and products

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Employees
- ✓ Investors
- Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

(2.2.2.16) Further details of process

At Akenerji, the Board of Directors holds the ultimate responsibility for establishing risk management and internal control systems to minimize the impacts of risks that may affect our stakeholders. The Strategic Planning and Risk Management Department plays a central role in this structure by identifying, assessing, prioritizing, reporting, and monitoring risks in line with company procedures and limits, in close coordination with designated Risk Officers from each business unit. In addition, our Risk Management Committee consisting of the CEO, Deputy General Managers, Directors, and the Head of Strategic Planning and Risk Management meets on a monthly basis to evaluate the risks and actions. Climate-related risks and opportunities are identified and followed jointly by the Strategic Planning and Risk Management Department and the Sustainability Committee. Within this governance framework, we identify, assess, and manage climate change-related dependencies, impacts, risks, and opportunities (DIROs) through a structured process that is aligned with international frameworks and strengthened by internal and external inputs. Our approach is based on global standards, including the recommendations of the TCFD and TNFD, as well as the sector-specific appendices of the SASB Standards as advised by Türkiye Sustainability Reporting Standards. In addition, we use resources from the International Energy Agency, such as the World Energy Outlook and Net Zero Emission Scenarios, to assess transition pathways and long-term sectoral risks. In 2024, as part of our sustainability strategy, we conducted a comprehensive survey to ensure stakeholder participation in the identification and assessment of climate-related risks and opportunities. The survey covered transition risks, acute and chronic physical risks, and potential opportunities. Our stakeholders assessed the risks such as water stress, extreme weather events, market uncertainties and carbon pricing mechanisms. We incorporated these perspectives into our risk management framework to support strategic decisionmaking and to establish a holistic approach that also takes financial effects into account. Among the specific risks we evaluate are the potential reduction of hydroelectric generation due to drought and water scarcity, operational disruptions caused by extreme weather events such as floods and storms, higher operational costs arising from the implementation of an Emissions Trading System, and market risks. Following this, we organized a workshop in line with TCFD and TNFD guidance to develop a comprehensive inventory of DIROs. During this process, climate risks were evaluated in terms of time horizon, category, existing controls, financial effects, and action plans. We also applied scenario analysis as an important tool in risk identification. For instance, we used the "STEPS (Stated Policies Scenario)" to evaluate the potential financial impacts of the introduction of an Emissions Trading System, while the "IPCC SSP5-8.5" scenario was applied to assess the potential impact of drought on hydroelectric generation. We prioritize risks according to their likelihood and financial impacts, using a five-scale matrix. Through this comprehensive and evolving process, we are evaluating our climate-related DIROs systematically by integrating them into both our strategic and financial planning. In doing so, we strengthen our resilience and support our transition toward a low-carbon energy future.

Row 2

(2.2.2.1) Environmental issue

Select all that apply

Water

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

Dependencies

- Impacts
- ✓ Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

✓ More than once a year

(2.2.2.9) Time horizons covered

Select all that apply

✓ Short-term

- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ☑ Site-specific
- Local
- ✓ National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures
- ✓ WRI Aqueduct
- ✓ WWF Water Risk Filter

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

- ☑ Environmental Impact Assessment
- ☑ ISO 14001 Environmental Management Standard
- ☑ ISO 14046 Environmental Management Water Footprint

Databases

☑ Regional government databases

Other

✓ Scenario analysis

✓ Desk-based research

✓ External consultants

✓ Materiality assessment

✓ Internal company methods

✓ Partner and stakeholder consultation/analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

Drought

Chronic physical

lacksquare Soil degradation

✓ Declining water quality

✓ Increased ecosystem vulnerability

✓ Water availability at a basin/catchment level

☑ Seasonal supply variability/interannual variability

Policy

✓ Increased difficulty in obtaining operations permits

✓ Poor coordination between regulatory bodies

Market

✓ Uncertainty in the market signals

Reputation

✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

✓ Dependency on water-intensive energy sources

☑ Changing temperature (air, freshwater, marine water)

☑ Changing precipitation patterns and types (rain, hail, snow/ice)

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Employees
- ✓ Investors
- Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

At Akenerji, water is of critical importance both as a performance indicator and as a key factor in the sustainability of our operations. Risks and vulnerabilities of water resources due to climate change are among our material issues, and we regularly assess water-related dependencies, impacts, risks, and opportunities (DIROs) for each of our power plants. We use globally recognized tools such as the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter, which provide locationspecific data and risk mapping to identify physical and transition water risks and assess the potential vulnerabilities of our power plants. These external resources are complemented by our own monitoring systems and operational data, enabling us to evaluate dependencies and impacts specific to hydroelectric power plants (HEPPs), our natural gas combined cycle power plant (NGCCPP), and our wind power plant (WPP). Erzin NGCCPP: Our Erzin NGCCPP, located in Hatay, is dependent on seawater for cooling purposes. We recognize that operations are sensitive to the availability and quality of seawater. The use of seawater may have thermal and chemical impacts on marine ecosystems, as increased discharge temperatures could affect marine life. Rising seawater temperatures, driven by climate change, could reduce cooling efficiency and increase operational costs. Although such occurrences are not frequent in the region, we have taken preventive measures and the facility continuously reports data to the national authority through advanced monitoring systems. As an opportunity, we aim to reduce dependency and enhance operational sustainability by investing in technologies to improve the efficiency of seawater cooling systems. Feke II HEPP: Feke II HEPP in Adana is fully dependent on river water for electricity generation, making water quality and river flow continuity critical to performance. Water use may result in habitat changes in river ecosystems, while dam structures can affect fish migration and aquatic life. Reduced river flows due to drought and climate change pose significant risks. potentially limiting generation capacity, increasing costs, and impacting financial performance. We mitigate these risks through reinforced infrastructure, generation planning based on meteorological forecasts and projections, and comprehensive emergency action plans. These measures also create opportunities by enabling us to better control water-related discharges and enhance operational resilience. Ayyıldız WPP: Our Ayyıldız WPP in Balıkesir, as a renewable energy facility, does not use water in electricity generation and therefore has no direct dependency on water resources. While no direct impacts are identified, indirect effects on local ecosystems may occur during construction phases. Although there are no operational water-related risks, we consider indirect environmental effects in our

assessments. At the same time, as a renewable energy source independent of water, our WPP represents a valuable opportunity by providing sustainable energy in regions that may face water scarcity risks. Through these facility-specific evaluation examples, supported by WRI Aqueduct and WWF Water Risk Filter assessments, we ensure that water-related DIROs are systematically integrated into our risk management and strategic planning processes.

Row 3

(2.2.2.1) Environmental issue

Select all that apply

☑ Biodiversity

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

✓ More than once a year

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ✓ Site-specific
- ✓ Local
- National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ✓ Encore tool
- ✓ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

- ☑ Environmental Impact Assessment
- ☑ ISO 14001 Environmental Management Standard

Databases

☑ Regional government databases

Other

- ✓ Scenario analysis
- ✓ Desk-based research
- ✓ External consultants
- ✓ Materiality assessment
- ✓ Internal company methods

✓ Partner and stakeholder consultation/analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

Drought

Chronic physical

- ☑ Change in land-use
- ☑ Changing temperature (air, freshwater, marine water)
- ✓ Increased ecosystem vulnerability
- ✓ Soil erosion

☑ Water availability at a basin/catchment level

Policy

✓ Poor enforcement of environmental regulation

Reputation

- ✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)
- ☑ Stakeholder conflicts concerning water resources at a basin/catchment level

Technology

✓ Data access/availability or monitoring systems

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Employees
- ✓ Investors
- Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

At Akenerji, we recognize that biodiversity is an essential component of environmental sustainability and that the health of ecosystems directly or indirectly influences the continuity and resilience of our operations. Given the geographical diversity of our power generation portfolio, our facilities are exposed to different dependencies, impacts, risks, and opportunities in relation to biodiversity. We therefore carry out biodiversity assessments on a facility-specific basis, supported by environmental monitoring programmes, biodiversity conservation practices, and investments in technologies that minimize ecological impacts. Considering the operational diversity

of Akenerji, WPP and Erzin CCGT assessments are presented. Ayyıldız WPP Dependency: While Ayyıldız WPP is not directly dependent on biodiversity, the health and stability of surrounding ecosystems indirectly support its operational sustainability. In particular, the presence of bird species and their flight routes near the plant constitutes an important factor for consideration. Impact: Wind turbines can have direct impacts on birds and bats by interfering with flight routes, and the movement of blades may pose vital hazards to these species. Additionally, construction activities associated with the turbines can cause temporary habitat disturbance and local ecosystem degradation. Risk: The EIA report of Ayyıldız WPP and the biodiversity risk maps for the region where it is in operation have been taken into consideration and habitat changes, bird flyways, local fauna and flora status have been assessed and no negative data regarding the deterioration of the ecological balance has occurred since the commissioning of the power plant. Opportunity: We continue to invest in advanced wind turbine technologies designed to reduce potential impacts on birds and other species. These efforts not only minimize environmental risks but also contribute to biodiversity protection, positioning our renewable energy investments as environmentally responsible solutions. Erzin NGCCPP Dependency: Erzin NGCCPP, located in Hatay, is indirectly dependent on the health of marine and coastal ecosystems in its operational area. The seawater-based cooling system establishes a direct link between the plant's performance and the quality of surrounding marine ecosystems. Impact: Seawater utilization for cooling can create thermal and chemical alterations in marine environments. Discharge of cooling water may increase seawater temperature and change its chemical composition, potentially affecting local marine biodiversity and ecological functions. Risk: Water use and discharge activities pose risks of altering ecosystem balance and function. Coastal habitats near the power plant may be affected by water use and discharge and may have negative impacts on ecosystem services. Opportunity: At the power plant, we apply reverse osmosis treatment to seawater, using it as high-pressure steam and cooling water in turbine processes. This best practice enables us to increase operational efficiency while minimizing our ecological footprint. By adopting innovative technologies and good practice models, we demonstrate that responsible operations can simultaneously enhance performance and reduce biodiversityrelated risks.

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

[Add row]

Yes

(2.2.7.2) Description of how interconnections are assessed

At Akenerji, as part of our sustainability strategy, we assess the interconnections between environmental dependencies, impacts, risks, and opportunities (DIROs) through an integrated and holistic approach in line with TCFD and TNFD frameworks. We also use global recognized standards such as TSRS along with ISO 14001 Environmental Management System, ISO 31000 and COSO Enterprise Risk Management Framework. This approach enables us to understand how our dependence on nature and ecosystem translates into operational impacts, associated risks like operation or supply chain disruptions and potential opportunities including renewable energy use and energy efficiency, and how these elements are embedded into our strategic, decision-making and financial planning processes. We have analysed the interconnections between our operations and nature. For instance, our HEPPs are highly dependent on water resources, creating both impacts on water bodies through hydroelectric generation and risks of operational disruption in cases of water depletion or deterioration in water quality. By contrast, Ayyıldız WPP does not directly depend on water, but has been carefully assessed for potential impacts on bird migration routes and local habitats. Such evaluations help us identify plant-specific DIRO areas while maintaining a portfolio-wide perspective. This process is embedded in our decision-making structure, corporate goals and long term

strategies. We have also identified synergies between our decarbonization targets and nature-positive outcomes. Our planned capacity increases in solar power plants and wind power plants will reduce carbon emissions while alleviating pressure on water resources and biodiversity, given that these technologies are not water-dependent. At the same time, our biodiversity conservation projects and water management strategies enhance both environmental sustainability and energy efficiency. For example, minimum environmental flow regimes applied at hydroelectric plants such as Uluabat HEPP both safeguard ecosystem health and secure operational performance. We recognize that there may be trade-offs between increasing hydroelectric generation capacity and protecting water resources and biodiversity. To address these, we apply advanced hydrological and drought modelling as well as ecological design elements such as fish passages to balance ecosystem integrity with energy production needs. Through these practices, we ensure that environmental dependencies and impacts are directly linked to the identification and management of risks and opportunities, thereby strengthening the resilience of both our business and the ecosystems on which we depend. [Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ Yes, we have identified priority locations

(2.3.2) Value chain stages where priority locations have been identified

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.3.3) Types of priority locations identified

Sensitive locations

- ✓ Areas important for biodiversity
- ✓ Areas of limited water availability, flooding, and/or poor quality of water
- ☑ Areas of importance for ecosystem service provision

Locations with substantive dependencies, impacts, risks, and/or opportunities

- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to water
- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to biodiversity

(2.3.4) Description of process to identify priority locations

We identify our priority locations by evaluating both environmental dependencies and risks for each of our power plants. Through the Encore tool, we assess the specific dependencies of our hydroelectric, wind, and natural gas combined cycle power plants separately. Our hydroelectric plants depend on stable water availability, climate conditions influencing hydrological cycles, healthy ecosystems that maintain water quality and quantity, and soil stability. Our natural gas combined cycle power plant is primarily dependent on reliable water supply, climate conditions that affect efficiency, and ecosystem services supporting soil retention. For our wind power plant, key dependencies include wind availability, climate conditions, and sustainable land use. In addition to dependency analysis, we conduct risk assessments using the WWF Water Risk Filter and the Biodiversity Risk Filter. These tools enable a location specific evaluation of potential risks such as water scarcity, water quality issues, climate-related vulnerabilities, and biodiversity sensitivities in surrounding ecosystems for each power plant. By combining dependency and risk assessments, we identify sensitive and priority locations where our operations may be most affected by environmental factors. Through this integrated approach, we embed priority location analysis into our strategic decision-making processes and maintain regular monitoring and management of our environmental dependencies and risks across all power plants.

(2.3.5) Will you be disclosing a list/spatial map of priority locations?

Select from:

✓ Yes, we will be disclosing the list/geospatial map of priority locations

(2.3.6) Provide a list and/or spatial map of priority locations

Akenerji Priority Locations 2024.pdf [Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

- Oualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

☑ EBITDA

(2.4.3) Change to indicator

Select from:

✓ % decrease

(2.4.4) % change to indicator

Select from:

✓ 1-10

(2.4.6) Metrics considered in definition

Select all that apply

- ✓ Frequency of effect occurring
- ☑ Time horizon over which the effect occurs
- ☑ Likelihood of effect occurring

(2.4.7) Application of definition

At Akenerji, we assess the significance of risks and opportunities using a combined impact and likelihood approach in line with our Corporate Risk Management Procedure as indicated our TSRS Report. The impact reflects the potential consequences should a risk materialize and is evaluated using both quantitative and qualitative criteria. The likelihood represents the estimated probability of occurrence, even after mitigation measures have been implemented. Together, these two elements are assessed through a 5x5 scaled risk and opportunity matrix, where scores range from 1 (very low impact and very unlikely to occur) to 5 (very high impact and extremely likely to occur). The overall risk score is calculated by multiplying the impact and likelihood ratings. In addition, risks are evaluated across defined time horizons to capture when their effects are expected to materialize. From a quantitative perspective, substantive effects are defined in terms of the potential financial impact on EBITDA. In accordance with our financial impact scale, a one-time effect equal to or above 6.92% of EBITDA or a continuous effect equal to or above 3.5% of EBITDA is considered highly substantive. Other thresholds are defined incrementally, with smaller effects (e.g. below 0.432% of EBITDA) rated as very low. This structured scale allows us to consistently evaluate the financial materiality of our risks and opportunities. From a qualitative perspective, substantive effects are defined by considering factors beyond direct financial performance. These include potential damage to corporate reputation, compliance challenges related to regulatory developments, impacts on stakeholder trust, operational disruptions and broader environmental and social implications. For instance, reputational harm arising from insufficient adaptation to climate risks, or failure to meet stakeholder expectations on sustainability performance, is recognized as a material qualitative effect even if immediate financial consequences are limited. By combining quant

ensure that substantive effects of risks are assessed holistically, capturing both measurable financial consequences and broader strategic, reputational, and operational implications.

Opportunities

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

☑ EBITDA

(2.4.3) Change to indicator

Select from:

✓ % increase

(2.4.4) % change to indicator

Select from:

☑ 1-10

(2.4.6) Metrics considered in definition

Select all that apply

- ✓ Frequency of effect occurring
- ✓ Time horizon over which the effect occurs
- ☑ Likelihood of effect occurring

(2.4.7) Application of definition

At Akenerji, we assess the significance of risks and opportunities using a combined impact and likelihood approach in line with our Corporate Risk Management Procedure as indicated our TSRS Report. Opportunities are also assessed through a 5x5 matrix where impact and likelihood are scored from 1 (very low) to 5 (very high). The overall opportunity score is calculated by multiplying these two dimensions and all outcomes are aligned with our strategic planning and sustainability goals. Impact is evaluated both quantitatively and qualitatively. From a quantitative perspective, opportunities are deemed substantive if they generate a positive effect on EBITDA, based on thresholds defined in our financial impact scale. For instance, one-time gains of 6.92% or more of EBITDA, or continuous improvements of 3.5% or more of EBITDA, are considered highly substantive. Smaller incremental improvements are scored accordingly on the 1–5 scale. From a qualitative perspective, we assess non-financial benefits such as enhanced corporate reputation, increased stakeholder trust, improved regulatory compliance, strengthened resilience and contributions to the transition toward a low-carbon economy. Time horizons are also applied to opportunity assessments. Our opportunity areas mainly focus on expanding renewable energy capacity, implementing hybrid power plant projects, advancing low-carbon strategies and investing in new technologies that improve efficiency and resilience. These initiatives contribute both to the long term financial performance of the company and to our strategic goal of supporting the transition to a low-carbon and sustainable energy system.

[Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ Yes, we identify and classify our potential water pollutants

(2.5.2) How potential water pollutants are identified and classified

We identify and classify potential water pollutants through a comprehensive process that is fully aligned with ISO 14001 standard and national regulations including the Environmental Permit and License Regulation, the Water Pollution Control Regulation and Environmental Impact Assessment requirements. Pollutants are identified using a combination of risk assessments and environmental impact analyses with a focus on their potential effects on water ecosystems and human health. Within this framework, pollutants are categorized into groups such as heavy metals (e.g., Ni, Zn, Hg, Pb, Cr), organic pollutants, coliform bacteria, and other critical parameters including pH and temperature. At our Erzin NGCCPP, wastewater streams including domestic wastewater, cooling water, and seawater reverse osmosis system discharge are collected in a pit and carefully monitored to ensure compliance with deep-sea discharge limits. Wastewater quality is tracked both through periodic sampling and in real time via the Ministry of Environment, Urbanization and Climate Change's Continuous Wastewater Monitoring System (SAIS). In addition, seawater quality is monitored and analyzed twice a year in line with our EIA commitments. As part of our environmental permit obligations, we regularly monitor the concentration or level of 61 parameters throughout the year, with frequency adjusted according to the discharge location. We also apply water quality monitoring practices at our HEPPs, where the availability and quality of water are directly linked to operational performance. [Fixed row]

(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Row 1

(2.5.1.1) Water pollutant category

Select from:

✓ Oil

(2.5.1.2) Description of water pollutant and potential impacts

At the Erzin NGCCPP, oil pollutants mainly arise from the operation and maintenance of machinery and cooling systems that are integral to the power generation process. These substances typically include lubricants and hydraulic fluids, which are essential for ensuring the smooth functioning of equipment. If not properly managed, oils can be released into the environment through leaks or accidental spills. Once discharged into water, oil creates a thin surface layer that restricts oxygen exchange between the water and the atmosphere, leading to oxygen depletion. This condition may suffocate aquatic organisms, disrupt ecosystem balance, and cause long-term contamination of water bodies. Furthermore, oil pollution can pose serious risks to human health if it contaminates drinking water resources or enters the food chain through bioaccumulation.

(2.5.1.3) Value chain stage

Select all that apply

Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods
- ☑ Other, please specify :Compliance with national legislation, storage, disposal/recovery methods Compliance with Internal Procedures (The CVR/PR 002 Environmental Accident and Complaint Reporting Procedure)

(2.5.1.5) Please explain

At Erzin NGCCPP, we minimize the adverse impacts of oil pollutants through our environmental strategy that combines spill prevention, discharge treatment, and strict compliance with national regulations and our internal procedures, specifically our "CVR/PR 002 - Environmental Accident and Complaint Reporting Procedure." Waste oil generated during electricity production is reused whenever possible, while the remaining oil is stored in compliance with waste management regulations and transferred to licensed recycling companies. Water mixed with rainwater is treated at our on-site industrial wastewater treatment plant before being discharged. Spill prevention is ensured through regular maintenance, inspections and emergency response drills. Environmental incidents, including spills or leaks, are classified into three categories (1st, 2nd, and 3rd category accidents), with responses managed according to our internal procedure. Oil-contaminated water is treated using oil-water separators to comply with stringent discharge standards. The effectiveness of these measures is monitored in real-time via the Ministry of Environment's Continuous Wastewater Monitoring System (SAIS). Environmental audits and key performance indicators, such as the number of incidents, volume of oil recovered, and compliance with discharge regulations, are tracked to assess effectiveness and guide continuous improvement.

Row 2

(2.5.1.1) Water pollutant category

Select from:

Pathogens

(2.5.1.2) Description of water pollutant and potential impacts

Pathogens, including bacteria such as fecal coliforms, viruses, and other microorganisms, may originate from wastewater discharges, particularly those associated with domestic wastewater treatment processes at the Erzin NGCCPP. At this power plant, wastewater from the domestic treatment plant, together with cooling water, industrial wastewater, and seawater reverse osmosis system discharge, is collected in a discharge pit and treated to comply with deep-sea discharge standards. If pathogens in this wastewater are not effectively eliminated, they can enter surrounding water bodies, creating serious risks for both human health and local ecosystems. Contaminated water can transmit waterborne diseases to nearby communities, while also causing ecological disruptions by harming aquatic life and facilitating the spread of invasive species. Such pathogen pollution is especially hazardous in areas where water resources are used for drinking, recreation, or irrigation, as these microorganisms can persist in the environment and lead to long-term public health risks and ecological degradation.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

✓ Industrial and chemical accidents prevention, preparedness, and response

- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ☑ Other, please specify: Compliance with national legislation and discharge methods Compliance with Internal Procedures (The CVR/PR 002 Environmental Accident and Complaint Reporting Procedure)

(2.5.1.5) Please explain

At Erzin NGCCPP, we manage pathogens through advanced wastewater treatment processes designed to eliminate or neutralize harmful microorganisms before discharge. We conduct regular monitoring of effluent quality, including testing for fecal coliforms and other microbiological indicators, to ensure compliance and enable the early detection of potential issues. In the event of a system failure, spill, or accident, we implement our CVR/PR 002 - Environmental Accident and Complaint Reporting Procedure, which categorizes incidents into three levels and ensures an appropriate and swift response. This includes immediate shutdown procedures and the activation of backup treatment systems to prevent the release of untreated wastewater. The effectiveness of our approach is evaluated through continuous environmental monitoring, regular audits, and key performance indicators such as pathogen reduction rates and compliance with discharge permits. Through these measures, we safeguard human health, protect ecosystems, and reinforce our commitment to minimizing the environmental impacts of our operations.

Row 3

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Inorganic pollutants, including heavy metals like nickel (Ni), zinc (Zn), mercury (Hg), lead (Pb), chromium (Cr), can originate from industrial processes at Akenerji's Erzin NGCCPP. These pollutants are toxic to aquatic life even at low concentrations and can persist in the environment, bioaccumulating in organisms and posing significant risks to both ecosystems and human health through contaminated water supplies. The long term presence of these substances can lead to the degradation of water quality, harming biodiversity and impacting the health of local communities relying on these water resources.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ✓ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ☑ Other, please specify: Compliance with national legislation and discharge methods Compliance with Internal Procedures (The CVR/PR 002 Environmental Accident and Complaint Reporting Procedure)

(2.5.1.5) Please explain

At Erzin NGCCPP, we manage inorganic pollutants such as lead, mercury, and chromium through dedicated treatment processes that ensure compliance with regulatory standards. We conduct regular audits and infrastructure assessments to identify and mitigate potential risks, including leaks or spills that could cause environmental contamination. In addition, we operate an integrated waste management system to safely handle, store, and dispose of materials containing inorganic pollutants. The effectiveness of our practices is closely monitored through real-time data analysis, periodic environmental audits, and key performance indicators such as compliance with discharge permits and the volume of pollutants removed. By implementing these measures, we protect water ecosystems, safeguard surrounding communities, and uphold our commitment to responsible and sustainable operations.

Row 4

(2.5.1.1) Water pollutant category

Select from:

☑ Other nutrients and oxygen demanding pollutants

(2.5.1.2) Description of water pollutant and potential impacts

At the Erzin NGCCPP, pollutants such as Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) serve as critical indicators of organic matter in wastewater. As these substances break down, they consume dissolved oxygen in receiving water bodies, leading to oxygen depletion. Reduced oxygen levels can have severe consequences for aquatic ecosystems, including fish mortality, the decline of other aquatic organisms, and overall disruption of ecological balance. Elevated COD and BOD values also signal the presence of organic pollutants that may accelerate eutrophication, resulting in excessive algal growth, further oxygen depletion, and deterioration of water quality. Such impacts are especially harmful in areas where water resources are essential for drinking, agriculture, and sustaining biodiversity.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ✓ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ☑ Other, please specify :Compliance with national legislation and discharge methods Compliance with Internal Procedures (The CVR/PR 002 Environmental Accident and Complaint Reporting Procedure)

(2.5.1.5) Please explain

At our hydroelectric power plants and at Erzin NGCCPP, we manage COD and BOD levels through comprehensive wastewater treatment processes that incorporate sector specific methods to ensure full compliance with regulatory requirements. These processes are designed to significantly reduce organic pollutants prior to discharge, minimizing potential impacts on receiving water bodies. We strictly adhere to national legislation as well as our internal procedures, including the CVR/PR 002 - Environmental Accident and Complaint Reporting Procedure, which categorizes incidents and ensures a prompt and appropriate response to any environmental accidents that may affect wastewater quality. All wastewater is carefully stored and managed, with disposal and recovery methods carried out in line with national standards. The effectiveness of these measures is continuously monitored through real-time data analysis, regular environmental audits, and key performance indicators such as COD and BOD reduction rates, compliance with discharge permits, and the number of reported incidents. Through these practices, we demonstrate our commitment to protecting water resources, safeguarding ecosystems, and maintaining responsible operational performance.

Row 5

(2.5.1.1) Water pollutant category

Select from:

✓ Other, please specify :pH

(2.5.1.2) Description of water pollutant and potential impacts

pH levels outside the optimal range can place significant stress on aquatic organisms, potentially leading to mortality, while also influencing the solubility and toxicity of heavy metals and disrupting the overall ecological balance. In water bodies receiving discharges from Akenerji's operations, including both the Erzin NGCCPP and our hydroelectric power plants, fluctuations in pH may trigger these adverse effects, making it a critical parameter to monitor and manage. Such imbalances not only threaten the ecological health of rivers and reservoirs associated with HEPPs but can also undermine the effectiveness of wastewater treatment processes, further amplifying environmental risks.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Other, please specify: Compliance with national legislation and discharge methods Compliance with Internal Procedures (The CVR/PR 002 Environmental Accident and Complaint Reporting Procedure)

(2.5.1.5) Please explain

At our facilities, including Erzin NGCCPP and hydroelectric power plants, pH levels are managed through precise monitoring and treatment processes to ensure that discharges meet regulatory requirements. Sector-specific processes are employed to maintain pH within optimal ranges. Akenerji also implements integrated monitoring systems that provide real-time data on pH levels, allowing for immediate adjustments if deviations occur. Compliance with national legislation and internal procedures, including the CVR/PR 002 - Environmental Accident and Complaint Reporting Procedure, ensures that any incident affecting pH levels is promptly addressed. The success of these actions is evaluated through continuous monitoring, regular audits, and performance indicators, such as the frequency of pH excursions and compliance with discharge permits. These measures are critical for protecting aquatic ecosystems and maintaining water quality standards. [Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.1.1) Environmental risks identified

Select from:

✓ Yes, both in direct operations and upstream/downstream value chain

Water

(3.1.1) Environmental risks identified

Select from:

☑ Yes, both in direct operations and upstream/downstream value chain

Plastics

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Not an immediate strategic priority

(3.1.3) Please explain

We have not identified any environmental risks related to plastics that have had a substantive effect on our organization. This conclusion reflects the nature of our core business operations, which focus on the generation of electricity from natural gas, hydroelectric, and wind power plants. Since our operations do not involve the production, commercialization, use, or disposal of plastics, the relevance of plastics as an environmental risk within our direct operations and value chain is minimal. Our commitment to environmental sustainability is demonstrated through our compliance with the Regulation on Zero Waste (Sıfır Atık Yönetmeliği) in Türkiye. We conduct comprehensive waste segregation and implement effective waste reduction initiatives. In addition, we set unit-level waste reduction targets and manage waste responsibly; however, given the limited interaction with plastics in our operational activities, plastics do not currently constitute a significant environmental risk that requires detailed mapping or risk assessment. As a subsidiary of Akkök Holding, which is a signatory of the Business Plastics Initiative, we remain committed to addressing plastic waste in a broader context. By 2025, we plan to introduce practical training modules on waste segregation at our headquarters and systematically record data on the annual purchase of plastics and the amount of plastic waste sent for recycling at our power plants. Furthermore, we aim to eliminate single-use plastics such as plastic cups, straws, and bottles at our power plants by 2030. These actions reflect our sensitivity to environmental issues even though plastics do not currently pose a substantive risk to our operations. In summary, we maintain a proactive approach in monitoring our environmental impact and, if future assessments indicate emerging risks related to plastics, we will take appropriate measures to address them in alignment with our ongoing commitment to sustainability.

[Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Policy

✓ Carbon pricing mechanisms

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Turkey

(3.1.1.9) Organization-specific description of risk

In Türkiye, the planned introduction of the Emissions Trading System (ETS) is anticipated to increase operational costs in the long term for Akenerji, depending on the carbon price levels that will be applied under the carbon pricing framework. Although the system has not yet been formally implemented, it is expected to enter into force around 2026/27, beginning with a pilot phase involving limited allocation and system testing, with draft legislation currently under preparation and stakeholder consultations ongoing. Since coal and lignite power plants are considerably more carbon-intensive than natural gas facilities, their higher carbon costs will be directly reflected in electricity market prices. In this context, the emission factor of our Erzin NGCCPP remains below the national average, and with carbon costs being passed through to sales prices, the overall impact of this risk is expected to remain at a manageable level in the medium term. However, in the long term, as free allocations under the ETS are phased out, the plant will incur additional costs for each ton of carbon emitted, creating a recurring financial burden that needs to be addressed through efficiency measures and portfolio diversification. When carbon prices converge towards European levels, this burden may become both permanent and strategic, potentially leading to outcomes such as the closure of carbon-intensive plants and difficulties in accessing finance.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased compliance costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very likely

(3.1.1.14) Magnitude

Select from:

High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

We evaluate the financial implications of carbon pricing under the IEA STEPS scenario, which assumes that carbon prices will converge toward EU ETS levels by 2030 with a 50% free allocation in place. Within this framework, the Türkiye ETS is expected to be launched in 2026, with operational and financial impacts foreseen during the 2026–2035 period. Our scenario analyses show that in the short to medium term, the introduction of the ETS is anticipated to create a net positive impact on EBITDA of approximately 1–2%, as higher carbon-related costs are expected to be offset by electricity market price adjustments and the effect of free allocations. However, in the long term, as free allocations are phased out and carbon prices are projected to converge toward EU ETS levels, our Erzin NGCCPP will face direct financial liabilities for every ton of carbon emitted. This will turn carbon pricing into a recurring cost factor, creating a structural financial burden on our operations. in the long term carbon pricing is expected to become a permanent and strategic burden. This could lead to broader sectoral effects such as the closure of carbon-intensive plants, challenges in accessing financing, and an accelerated shift toward green energy.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

83222180

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

118278600

(3.1.1.25) Explanation of financial effect figure

The potential financial effect of the Türkiye ETS on Akenerji has been assessed based on current EU ETS carbon price levels, the anticipated convergence between Türkiye ETS and EU ETS prices, and long term price projections. For Erzin NGCCPP, Scope 1 stationary combustion emissions in 2024 amounted to 1,182,786 tCO₂e. In the long term, when free allocations are expected to be fully phased out and the benchmark value reduced to zero, the entire amount of these emissions will be subject to carbon pricing. Based on the current EU ETS carbon price of 70.37 US\$/tCO₂e, the annual additional cost for Akenerji would be approximately 83,222,180 US\$ (1,182,786 tCO₂e * 70.37 US\$/tCO₂e). Assuming that EU ETS carbon prices converge toward 100 US\$/tCO₂e in the long term, the annual cost could increase to 118,278,600 US\$ (1,182,786 tCO₂e * 100 US\$/tCO₂e). While short- to medium-term impacts may be mitigated by market dynamics and partial free

allocations, in the long term carbon pricing has the potential to create a structural and recurring financial burden for Akenerji, directly influencing operational costs and long term financial performance.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Increase environment-related capital expenditure

(3.1.1.27) Cost of response to risk

1

(3.1.1.28) Explanation of cost calculation

The cost of our response primarily consists of capital investments in renewable energy and hybrid projects, complemented by compliance expenditures for annual GHG monitoring, reporting, and verification in line with international and national standards.

(3.1.1.29) Description of response

In order to manage the risk related to the carbon pricing mechanism, Akenerji implements a structured approach to monitoring, managing and reducing GHG emissions across our portfolio. Each year, we calculate our corporate carbon footprint in line with the GHG Protocol and ISO 14064 standards, covering all of our power generation facilities. In addition, due to its regulatory classification, Erzin NGCCPP reports and verifies its emissions in accordance with the national legislation on Monitoring, Reporting, and Verification of Greenhouse Gas Emissions. Beyond compliance, we place strategic priority on reducing our carbon footprint and expanding renewable energy capacity as part of our long-term sustainability strategy. In line with recently published hybrid power plant regulations, we are focusing on feasibility studies for solar projects at existing sites, such as Erzin NGCCPP and Burç Bendi HEPP, where additional solar capacity can be integrated. In 2023, we initiated work on a hybrid solar project at Erzin NGCCPP, and in 2024 obtained a license amendment for 7.79 MWp of auxiliary solar capacity, with project development activities ongoing. We are also advancing other capacity expansion and renewable initiatives. At Ayyıldız Wind Power Plant, with an installed capacity of 28.2 MWe, a license amendment was secured in 2024 to add 6.2 MW of new capacity, bringing the plant's total to 34.4 MWe following feasibility studies and site assessments. Furthermore, we are progressing with the development of the Kemah Hydroelectric Power Plant in Erzincan, which will have an installed capacity of 198 MW and is expected to generate an average of 560 GWh of electricity per year once operational. Through these measures, we aim to manage ETS-related risks by reducing dependency on fossil-based generation and increasing our renewable energy portfolio with the planned investments.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Chronic physical

☑ Changing precipitation patterns and types (rain, hail, snow/ice)

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Turkey

(3.1.1.7) River basin where the risk occurs

Select all that apply

☑ Other, please specify :Susurluk Basin and Seyhan Basin, Türkiye

(3.1.1.9) Organization-specific description of risk

Out of our nine power generation facilities, seven are HEPPs. Electricity generation at these plants is directly dependent on river flows, water availability and water quality, which are increasingly affected by droughts, changing precipitation patterns and climate variability. According to the WRI Aqueduct Water Risk Atlas, our HEPPs are located in regions classified as high and extremely high risk in the "physical risks quantity" layer, highlighting the vulnerability of our operations to reduced water availability. A decline in river flows can lead to significant reductions in generation capacity, causing deviations from portfolio forecasts and directly impacting revenue streams. Meteorological fluctuations can also cause periodic decreases in generation at HEPPs. However, due to the diversity of our generation portfolio and our balancing capacity, the overall impact of such fluctuations remains limited. In particular, during dry periods, lower hydroelectric output is balanced by the contribution of the Erzin NGCCPP, which allows us to stabilize overall portfolio performance and limit short term financial losses arising from water related risks. According to the IPCC SSP5-8.5 scenario, precipitation in Türkiye is projected to decline by about 10% by 2030 and 17% by 2050. These reductions could lower river flows, leading to up to 10% production losses by 2030 and long term decreases in hydroelectric generation capacity.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Decreased revenues due to reduced demand for products and services

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very likely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

We take into account projections under the IPCC SSP5-8.5 high emission scenario, which foresees a 10% reduction in precipitation in Türkiye by 2030. Within this scenario, we anticipate an approximate 10% decline in annual water flows for our hydroelectric plants located in the Eastern Mediterranean, Central Anatolia and Southern Marmara basins, specifically Uluabat, Feke I-II, Himmetli, Gökkaya and Burç HEPPs, with a combined installed capacity of 285 MW. This reduction in water availability could result in an estimated 10% annual decrease in electricity generation, leading to potential revenue losses of 8–10%.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

77505559.44

(3.1.1.25) Explanation of financial effect figure

The anticipated financial effect of water related risk has been quantified based on the projected impact of reduced precipitation under the IPCC SSP5-8.5 high emission scenario. A decline of approximately 10% in annual water flows at our hydroelectric power plants, with a combined installed capacity of 285 MW, could lead to an estimated 8–10% reduction in revenues derived from these assets. Accordingly, the minimum and maximum short term financial effect has been calculated as USD 62,004,447.55 to USD 77,505,559.44, representing the potential range of revenue losses in the event of severe water stress conditions.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

✓ Improve monitoring of direct operations

(3.1.1.27) Cost of response to risk

1

(3.1.1.28) Explanation of cost calculation

The costs primarily comprise compliance and monitoring activities, as well as strategic investments in renewable energy projects that are not dependent on water resources, including the hybrid solar project at Erzin NGCCPP and the capacity expansion at the Ayyıldız Wind Power Plant.

(3.1.1.29) Description of response

Regarding the risk posed by water stress and changing hydrological conditions, we have established a systematic monitoring and planning approach to ensure the resilience of our operations. Our Trading Department conducts regular monitoring of water levels, wind conditions, weather patterns and seasonal transitions. These activities include continuous tracking and forecasting efforts that inform operational decision making across our portfolio. Based on weekly river flow forecasts, annual generation plans are prepared and subsequently revised throughout the year in line with evolving conditions. This allows us to adapt production strategies dynamically, mitigating potential deviations caused by fluctuations in water availability. During dry periods, when precipitation decreases and river flows decline, the output of our hydroelectric power plants is reduced, directly affecting overall generation capacity. To mitigate this impact and ensure continuity of supply, we rely on our Erzin NGCCPP, which plays a critical role in balancing the portfolio during such conditions. The flexibility of Erzin NGCCPP enables us to stabilize operations,

limit financial losses, and maintain energy supply even when hydrological variability adversely affects hydroelectric performance. Conversely, in rainy periods, increased hydroelectric output reduces the need for natural gas generation, supporting portfolio optimization. Additionally, at our hydroelectric power plants, the water abstracted from surface sources is returned to rivers or streams after its energy is utilized, ensuring the continuity of local water cycles. Moreover, to strengthen our water management practices, we have advanced our efforts by initiating compliance with the ISO 14046 Water Footprint Standard, under which we have completed the calculation and verification of our water footprint across all sites.

[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

83222180

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ 11-20%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

0

 $(3.1.2.5)\,$ % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

For the implementation of the Türkiye ETS, the additional operational cost is projected to be approximately USD 83,222,180 in the long term, reflecting the full exposure of the Erzin NGCCPP once free allocations are phased out. This amount corresponds to nearly 11% of the company's current revenue, indicating a substantive potential impact on long term financial performance.

Water

(3.1.2.1) Financial metric

Select from:

✓ Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

n

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

62004447.55

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

☑ 1-10%

(3.1.2.7) Explanation of financial figures

Regarding the risk of changing precipitation patterns, the minimum anticipated financial effect has been estimated at approximately USD 62,004,447 based on projected reductions in hydroelectric generation. This corresponds to around 8% of the our total revenue.

[Add row]

(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?

Row 1

(3.2.1) Country/Area & River basin

Turkey

✓ Other, please specify :Seyhan Basin

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

5

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

☑ 100%

(3.2.8) % organization's annual electricity generation that could be affected by these facilities

Select from:

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

Five of Akenerji's hydroelectric plants (Burç Bendi, Feke I, Feke II, Gökkaya, and Himmetli HEPPs) are located in the Seyhan basin, with a combined generation of 361,404 MWh per year, corresponding to 9.3% of our total electricity generation. Under the IPCC SSP5-8.5 scenario, a projected 10% decline in precipitation by 2030 is expected to reduce river flows in this basin, potentially leading to up to 10% lower hydroelectric output and an 8–10% revenue impact. Given the clustering of multiple facilities in this basin, Seyhan represents one of our most material areas of exposure to water-related risks.

Row 2

(3.2.1) Country/Area & River basin

Turkey

☑ Other, please specify :Susurluk Basin

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 100%

(3.2.8) % organization's annual electricity generation that could be affected by these facilities

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

Uluabat HEPP is located in the Susurluk basin and generated 227,494 MWh in the reporting year, representing 5.8% of our total electricity generation. According to the IPCC SSP5-8.5 high-emission scenario, precipitation levels in Türkiye are projected to decline by about 10% by 2030, which would result in a similar decrease in river flows. For Uluabat HEPP, this could translate into up to 10% lower annual generation and a corresponding 8–10% revenue loss potential. [Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

(3.3.1) Water-related regulatory violations

Select from:

✓ No

(3.3.3) Comment

During the reporting year, Akenerji was not subject to any fines, enforcement orders or penalties related to water management. We ensure full compliance with the discharge limits set out in the Water Pollution Control Regulation. The effectiveness of our measures is continuously tracked in real time by the Ministry of Environment, Urbanization and Climate Change through the Continuous Wastewater Monitoring System (SAIS).

[Fixed row]

(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Select from:

✓ No, but we anticipate being regulated in the next three years

(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?

Turkey received a grant from the World Bank Partnership for Market Readiness (PMR). The projects are implemented by the Ministry of Environment and Urbanization (MoEU) through the Climate Change Department (CCD). 1st Phase of the Project completed, and now the project is at the 2nd Phase. Turkey is considering the use of market based instruments such as carbon pricing to reach its climate change mitigation targets as said in the Project's report "Roadmap for the Consideration of Establishment and Operation of a Greenhouse Gas Emissions Trading System in Turkey". In 2020 meetings for the "Development of Software Registry System for Pilot ETS" were conducted and steering meeting for the "Assessment of Article 6 market mechanisms of the Paris Agreement and options for Turkey" was conducted. The first draft of the Communication Strategy for Carbon Pricing in Turkey was completed and presented at the Planning Carbon Pricing Communications Workshop in Istanbul. "GAP Report" that analyses the Turkish legal system and discuss the best case studies was submitted. Akenerji attended and actively participated in all of these meetings to keep up to date with the developments. New set of policy initiatives European Green Deal of European Commission are followed carefully. Developments in the Carbon Border Adjustment Mechanism (CBAM) by European Union are also tracked by Akenerji. As of 2026, when the financial obligation in the CBAM will start, the global competitiveness and operational profitability of exporter companies across the country whose products contain greenhouse gas emissions are expected to be adversely affected. In order to minimise this negative impact and encourage the reduction of greenhouse gas emissions in a cost-effective and economically efficient manner, an Emissions Trading System (ETS) is planned to be established in Turkey. In this context, an organised carbon market to be operated by EPIAŞ for the distribution and trading of allowances is being designed and the draft regulation was opened for opinio

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental opportunities identified
Climate change	Select from: ☑ Yes, we have identified opportunities, and some/all are being realized
Water	Select from: ☑ Yes, we have identified opportunities, and some/all are being realized

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resilience

✓ Increased resilience to impacts of climate change

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ Turkey

(3.6.1.8) Organization specific description

The planned introduction of the Türkiye ETS represents a strategic opportunity area directly linked to Akenerji's business model and operating portfolio. According to the draft regulation, the only facility in our portfolio subject to the scope is the Erzin NGCCPP. The opportunity arises from the lower carbon intensity of natural gas compared to coal and lignite, which continue to dominate a significant portion of Türkiye's power generation. As the ETS is implemented, coal and lignite-based plants will face substantially higher cost burdens, whereas natural gas plants such as Erzin NGCCPP will maintain a relative cost advantage. This creates a competitive edge for Akenerji in the Turkish electricity market, particularly as carbon costs are expected to be reflected in wholesale electricity prices. In the early years of ETS

implementation, it is foreseen that free allocations will be provided, allowing Akenerji to begin the compliance process without incurring significant carbon costs. This transition mechanism supports operational resilience while the system is phased in. Moreover, Akenerji has conducted a scenario analysis based on the IEA STEPS pathway. According to this analysis, the implementation of ETS is expected to result in a net positive EBITDA impact of approximately 1–2% in the short to medium term, as higher carbon-related costs across the sector are offset by wholesale market price adjustments and the advantage of our diversified portfolio.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenue resulting from price premiums

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Very likely (90–100%)

(3.6.1.12) Magnitude

Select from:

✓ Low

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the short term, the planned implementation of the Türkiye ETS is expected to create a limited yet positive financial impact for Akenerji. When the system enters into force in 2026, a transitional phase with free allocations is foreseen, similar to the early years of the EU ETS. As the national benchmark emission factor is higher than the actual emissions intensity of our Erzin NGCCPP, the plant is expected to benefit from free allocations in the initial years, with a substantial share of its emissions covered without incurring additional compliance costs. This will enable Akenerji to begin the transition process without a direct financial burden, while at the same time adapting effectively to the new regulatory framework. At the same time, carbon pricing is expected to be reflected in wholesale electricity prices, as coal and lignite plants with higher emission intensities incorporate these costs into their generation costs. Natural gas plants, including Erzin NGCCPP, will carry a comparatively smaller compliance burden but still benefit from the resulting increase in market prices. Moreover, our seven hydroelectric power plants and one wind power plant is outside the scope of ETS. These facilities will face no carbon costs and will sell their electricity at market prices that already include carbon costs,

thereby strengthening the positive revenue impact. As a result, with compliance costs limited and market prices expected to rise, the overall effect of ETS in its initial years is anticipated to translate into a net positive EBITDA impact of approximately 1–2%.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ No

(3.6.1.24) Cost to realize opportunity

0

(3.6.1.25) Explanation of cost calculation

The realization of this opportunity does not require significant additional cost in the short term, as compliance will initially be supported by free allocations under the Türkiye ETS. Additional expenditures are primarily associated with monitoring, reporting, and verification obligations, which are already integrated into Akenerji's environmental management systems. For this reason, no material incremental cost is anticipated in the early years of implementation.

(3.6.1.26) Strategy to realize opportunity

Our strategy is to be fully prepared for the Türkiye ETS while making the most of the advantages of our renewable energy portfolio. We already carry out annual carbon footprint calculations and verifications in line with international standards and have Erzin NGCCPP's emissions verified by independent auditors, as required by national regulations. We also use scenario analysis to see how carbon pricing may affect our business and include this in our planning. At the same time, we are focusing on new renewable investments, like hybrid solar projects and wind power capacity increases.

Water

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Energy source

✓ Use of renewable energy sources

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ Turkey

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

☑ Other, please specify :Fırat, Susurluk and Seyhan Basins

(3.6.1.8) Organization specific description

Renewable energy generation from water resources represents a key opportunity area for Akenerji, as seven of our nine operational facilities are hydroelectric power plants with a combined installed capacity of 292 MW, located in the Eastern Mediterranean, Central Anatolia, and Southern Marmara basins. Hydroelectric generation provides multiple strategic advantages such as reducing dependency on imported fossil fuels, contributing to national energy security and supports Türkiye's long term climate strategy and targets. The utilization of water resources as a renewable energy source is further reinforced by political support, regulatory incentives and Türkiye's strong geographical and hydrological potential. In addition to existing portfolio, we are actively expanding our hydroelectric power capacity. Ongoing work on the 198 MW Kemah HEPP project in Erzincan, which is expected to generate approximately 560 GWh of electricity annually, continues as part of our commissioning efforts.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased production capacity

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

☑ The opportunity has already had a substantive effect on our organization in the reporting year

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Very likely (90–100%)

(3.6.1.12) Magnitude

Select from:

✓ High

(3.6.1.13) Effect of the opportunity on the financial position, financial performance and cash flows of the organization in the reporting period

In 2024, hydroelectric power plants accounted for approximately 16% of Akenerji's total electricity generation, producing 615,425 MWh of renewable electricity. With an average electricity sales price of USD 65-75/MWh applied to HEPP generation, this production directly contributed to electricity sales revenues, creating a tangible positive financial effect during the period. Therefore, contribution of our seven operational HEPPs provided both financial gains and strengthened our renewable based portfolio performance.

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The commissioning of the 198 MW Kemah HEPP in the medium term, with an expected annual generation of around 560,000 MWh, will significantly enhance our renewable generation capacity and revenue potential. With the integration of Kemah HEPP into our portfolio, the share of electricity generated from hydroelectric power plants will nearly double, rising to approximately 30% of our total generation. In addition, valuation models for our HEPP portfolio indicate that a 10% increase in forward electricity prices would further amplify the positive financial effect, improving long-term cash flow stability.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.16) Financial effect figure in the reporting year (currency)

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

84042914

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

96972593

(3.6.1.23) Explanation of financial effect figures

In the reporting year, Akenerji generated 615,425 MWh of electricity from its hydroelectric power plants. With an average sales price of USD 70/MWh, this production resulted in approximately USD 43,079,750 in revenue. The anticipated financial effect has been calculated considering that with the commissioning of the 198 MW Kemah HEPP, Akenerji's hydroelectric generation will increase by approximately 560,000 MWh annually, bringing the total hydroelectric output to around 1,175,425 MWh per year. Based on electricity sales prices of USD 65–75/MWh applied in our valuation models, and assuming a 10% increase in forward prices, the adjusted price range becomes USD 71.5–82.5/MWh. Under this scenario, the expected annual revenue contribution from hydroelectric generation is estimated between USD 84.0 million and USD 96.9 million,

(3.6.1.24) Cost to realize opportunity

1

(3.6.1.25) Explanation of cost calculation

It requires capital investments in hydroelectric infrastructure, modernization projects and supporting technologies for efficient water management as well as costs related to regulatory compliance, permitting, and environmental monitoring. The primary cost drivers include feasibility studies, construction and modernization of turbines and equipment.

(3.6.1.26) Strategy to realize opportunity

We prioritize the expansion of renewable generation from hydroelectric power as an important opportunity area in our sustainability strategy. To maximize this potential, we are modernizing our existing HEPP portfolio to increase efficiency while developing new large scale project, which is expected to add approximately 560,000 MWh of annual generation upon commissioning. In addition, we integrate advanced hydrological data modeling and climate forecasts into our operational planning to optimize output and ensure continuity.

[Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

1153

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ Less than 1%

(3.6.2.4) Explanation of financial figures

The reported figure is based on Akenerji's TSRS disclosure, which states that scenario analyses project a net positive EBITDA impact of 1–2% resulting from the implementation of the Türkiye ETS. This outcome reflects the combined effects of higher wholesale electricity prices, the relative cost advantage of natural gas compared to coal and lignite, and the benefit of free allocations in the early years of ETS implementation. In financial terms, the upper threshold of this impact corresponds to approximately USD 1,153, which represents less than %1 of our total revenue.

Water

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

96972593

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ 11-20%

(3.6.2.4) Explanation of financial figures

The reported figure reflects the projected contribution of hydroelectric generation to Akenerji's revenue, including both existing HEPPs (292 MW) and the planned 198 MW Kemah HEPP. In this scenario, total annual generation from water resources is expected to reach approximately 1,175,425 MWh, corresponding to around 97 million in annual revenue. This represents 12.5% of our total revenue.

[Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

✓ More frequently than quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

- ☑ Executive directors or equivalent
- ✓ Non-executive directors or equivalent
- ✓ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Akenerji's Board of Directors is strongly committed to advancing diversity and inclusion as a core element of our governance structure. Our diversity and inclusion policy emphasizes selecting board members based on merit, ensuring that decisions are free from discrimination related to age, race, ethnicity, geographical background, or gender. Presently, 25% of our Board members are women, underscoring our dedication to gender diversity. We aim to maintain and increase this percentage, recognizing the critical role diverse perspectives play in fostering innovation, effective decision-making, and long-term business resilience. Akenerji's Sustainability Materiality Matrix highlights equal opportunity and diversity as important topics. Our policy promotes an inclusive environment where every voice

contributes to our success. The Board regularly evaluates its composition to align with diversity goals. Our human resources practices support employees in becoming versatile, innovative team members, making Akenerji a preferred and exemplary institution in the sector. Energy for us means adding value to these lands, being reliable with a pioneering stance, benefiting society, and constantly evolving with new ideas. We embrace diversity, feed on versatility, and blend expertise with an agile culture, youth energy, and dynamism, opening doors to a good future. In our employer value proposition, all employees embrace the motto "Make a difference with your energy".

(4.1.6) Attach the policy (optional)

C.Icerik-G_IK 001 - İnsan Kaynakları Politikası.pdf [Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

	Board-level oversight of this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from: ✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- ☑ Chief Executive Officer (CEO)
- ☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- ☑ Board Terms of Reference
- ✓ Board mandate
- ✓ Individual role descriptions

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Overseeing reporting, audit, and verification processes
- ☑ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures

- ✓ Overseeing and guiding public policy engagement
- ☑ Reviewing and guiding innovation/R&D priorities
- ☑ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy

- ☑ Monitoring supplier compliance with organizational requirements
- ✓ Monitoring compliance with corporate policies and/or commitments
- ✓ Overseeing and guiding the development of a climate transition plan
- ✓ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

At Akenerji, the Board of Directors (BoD) is the highest authority responsible for decision-making on climate and sustainability-related activities. The BoD holds a high level of competence and accountability in managing environmental issues and climate-related risks and opportunities, playing a critical role in advancing Akenerji's transition to a low-carbon future. In 2024, the BoD convened five times, with sustainability as one of the key agenda items. The main issues addressed included Türkive Reporting Sustainability Standards compliant reporting obligation, external audits, CDP rating results, the integrated reporting process, and legal matters concerning power plants, such as renewed capacity reports and licensing processes. In addition, high level risks identified within the 5x5 risk matrix are reviewed by departments every two months and subsequently discussed by the BoD. The BoD actively monitors and manages the strategic importance of environmental issues and climate-related risks. With a bidirectional governance structure in place, effective information flow is ensured both top-down and bottom-up. While the BoD maintains executive-level responsibility, climate-related processes are operationally managed by the Sustainability Committee (SC), composed of senior decisionmaking managers. Chaired by the Deputy General Manager of Production (COO) and reporting to the General Manager (CEO), the SC will be restructured in the next reporting period under the direct leadership of the CEO, with committee membership to be redefined based on expertise and competencies. Throughout the year, the SC has monitored sustainability trends and climate-related issues aligned with corporate goals, integrating performance indicators into monitoring systems as part of sustainability management. The Committee also evaluates dependencies, impacts, risks, and opportunities to further strengthen climate resilience and sustainability strategies, while encouraging active employee participation through targeted training programs. In 2024, the SC meetings reviewed climate-related risks and opportunities, current performance, and planned actions and advanced the definition of short-term targets. In line with committee decisions, Akenerji carried out TCFD- and TNFD-based studies to analyze the impacts of climate change and integrate them into strategic planning. During the reporting period, a workshop was held to assess dependencies, impacts, risks, and opportunities specific to our sector and company, and financial effects were analyzed. These sustainability and climate-related risks and opportunities were also disclosed in our report prepared in reference to the TSRS. In addition, dedicated meetings were also held within the scope of the TSRS to further evaluate these topics. Furthermore, after defining main and sub-targets, the short, medium and long term actions and projects required to achieve them were determined, and progress was presented to the BoD.

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- ☑ Chief Executive Officer (CEO)
- ▼ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- ☑ Board Terms of Reference
- ☑ Board mandate
- ✓ Individual role descriptions

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Overseeing reporting, audit, and verification processes
- ✓ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements
- ✓ Monitoring compliance with corporate policies and/or commitments
- ✓ Overseeing and guiding the development of a climate transition plan
- ✓ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Overseeing and guiding public policy engagement
- ☑ Reviewing and guiding innovation/R&D priorities
- ☑ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy

(4.1.2.7) Please explain

The Board of Directors (BoD) is the highest authority responsible for decision-making on sustainability-related activities. Climate change, water, and biodiversity issues are managed under a holistic framework, with no separate governance structure established for water. The BoD carries a high level of competence and accountability for overseeing environmental matters, including the management of water-related risks and opportunities. The BoD provides strategic leadership on key issues such as monitoring and enhancing environmental performance, strengthening risk management practices, and integrating environmental considerations into corporate decision-making. It plays a critical role in ensuring the efficient use of water, safeguarding quality and availability, and achieving the company's long-term water management objectives. Through a bidirectional governance structure, the BoD ensures dynamic information flow both from top to bottom and bottom to top, enabling timely and effective oversight. While the BoD assumes ultimate responsibility at the executive level, sustainability processes are operationally managed by the Sustainability Committee (SC), composed of senior decision-making managers. The SC, chaired by the Deputy General Manager of Production (COO) and reporting directly to the General Manager (CEO), monitors sustainability trends and water-related issues throughout the year. By embedding performance indicators into monitoring systems, the SC ensures that water-related dependencies, impacts, risks, and opportunities are systematically addressed. In 2024, the SC reviewed climate-related DIROs, including those associated with water availability and variability, and defined corresponding actions while working to establish short-term targets.

Biodiversity

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- ☑ Chief Executive Officer (CEO)
- ☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

- ☑ Board Terms of Reference
- ☑ Board mandate
- ✓ Individual role descriptions

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Overseeing reporting, audit, and verification processes
- ✓ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ✓ Monitoring supplier compliance with organizational requirements
- ☑ Monitoring compliance with corporate policies and/or commitments
- ✓ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Overseeing and guiding public policy engagement
- ☑ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy

(4.1.2.7) Please explain

At Akenerji, the Board of Directors (BoD) serves as the highest authority for decision-making on sustainability-related activities. Climate change, water, and biodiversity are addressed under a holistic governance framework, with the BoD holding ultimate competence and responsibility for the oversight of biodiversity and ecosystem services. The Board provides strategic leadership in monitoring and improving environmental performance, strengthening risk management, and integrating environmental considerations into core decision-making processes. In doing so, the BoD plays a critical role in evaluating Akenerji's dependencies and impacts on ecosystem services and managing the associated risks and opportunities. In 2024, the Board discussed a wide range of topics, including external audits, Türkiye Reporting Sustainability Standards compliant reporting obligation, CDP reporting results, the integrated reporting process, legal processes of power plants (such as renewed capacity reports and licenses), EIA procedures related to capacity increases and solar projects, as well as outputs from Fortune & CRIF Türkiye Sustainability Research and the UN Global Compact's new reporting system. Every two months, the risks and opportunities table is reviewed by relevant departments, and high-priority risks identified in the 5x5 risk matrix are brought before the BoD for further evaluation. The BoD provides high-level oversight of biodiversity, recognized as one of the company's material issues, and closely monitors the management of biodiversity-related risks. A bidirectional governance

structure ensures dynamic information flow from both top to bottom and bottom to top. While the BoD assumes executive-level responsibility, biodiversity and other sustainability processes are managed operationally by the Sustainability Committee (SC), which is composed of senior decision-making managers. The SC, chaired by the Deputy General Manager of Production (COO) and reporting to the General Manager (CEO), monitors sustainability trends and biodiversity-related matters throughout the year. By embedding performance indicators into monitoring systems, the SC ensures that biodiversity dependencies, impacts, risks, and opportunities are systematically addressed. In 2024, the SC reviewed current performance across biodiversity-related themes, defined action plans, and set short-term targets. With the guidance of the BoD, biodiversity dependencies and impacts at each power plant were analyzed with the globally recognized tools like Encore, and the development of a facility-level biodiversity action plan was initiated to reflect the geographic distribution of our operations. [Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

☑ Executive-level experience in a role focused on environmental issues

Water

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

☑ Executive-level experience in a role focused on environmental issues

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from:

	Management-level responsibility for this environmental issue
	✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Committee

✓ Sustainability committee

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements

☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

✓ Developing a climate transition plan environmental issues

✓ Managing major capital and/or operational expenditures relating to

- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Committee is the highest management-level body with responsibility for climate issues at Akenerji. It is structured as a cross-functional governance body, chaired by the Deputy General Manager of Production (COO). The Committee's mandate covers ensuring the company's sustainability commitments across the entire value chain. It identifies Akenerji's material topics within sustainability, develops the Company's strategy, policy, and short, medium, and long-term roadmaps, and establishes action plans at the unit level. To operationalize these, the Committee defines performance criteria aligned with climate-related goals,

monitors progress regularly, and updates targets when necessary. In relation to climate change, the Committee reviews both operational and portfolio-level decarbonization measures, evaluates technological and regulatory trends, and integrates these into Akenerji's strategic planning. Information flows to the Committee through internal reports, unit-level risk reviews, and specialized Sustainability Working Groups, including the Green Strategy, Sustainable Finance and Reporting, and Sustainable Supply & Digitalization groups. Climate-related data such as annual GHG inventories, ETS compliance obligations, climate and nature related dependencies, impacts, risks and opportunities, scenario analyses and long-term decarbonization initiatives are systematically monitored. Risks and opportunities are first assessed at unit level and incorporated into a 5x5 corporate risk matrix, updated every two months. Consolidated results are presented to the Committee at its meetings. The Committee also ensures integration of these processes into sustainability reporting, approves climate disclosures, and submits the annual integrated report to the Board.

Water

(4.3.1.1) Position of individual or committee with responsibility

Committee

✓ Sustainability committee

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ✓ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments

☑ Setting corporate environmental targets

Strategy and financial planning

✓ Developing a climate transition plan environmental issues

☑ Managing major capital and/or operational expenditures relating to

- ✓ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Committee is the highest management-level body with responsibility for water-related issues at Akenerji. It operates as a cross-functional governance body, chaired by the Deputy General Manager of Production (COO), and oversees the company's strategic approach to managing water dependencies, impacts, risks, and opportunities. Given that seven of Akenerji's nine power generation facilities are hydroelectric power plants, water availability and quality are critical to ensuring operational continuity. Therefore, the Committee's mandate includes safeguarding sustainable water use across the portfolio, strengthening water efficiency, and ensuring compliance with environmental regulations such as the Water Pollution Control Regulation and discharge standards. The Committee develops company-wide strategies and policies, and establishes action plans at the unit level. Information flows to the Committee through hydrological data modeling, river flow forecasts, operational monitoring reports, and inputs from specialized Sustainability Working Groups. These include working groups focused on green strategy and sustainable supply, which support water efficiency. The Committee also oversees and reviews ISO 14046 based water footprint assessments and their verification. Water-related risks and opportunities are assessed at the facility level, with drought scenarios, water stress analyses, and operational dependencies evaluated in line with IPCC projections and WRI Aqueduct risk layers. Findings are consolidated into a 5x5 corporate risk matrix, updated every two months, and reviewed by the Committee at its regular meetings. The Committee also ensures that water issues are fully integrated into Akenerji's sustainability approach.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Committee

✓ Sustainability committee

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan environmental issues
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ✓ Developing a business strategy which considers environmental issues

☑ Managing major capital and/or operational expenditures relating to

☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Committee is the highest management-level body with responsibility for biodiversity and ecosystem-related issues at Akenerji. It operates as a cross-functional governance platform, chaired by the Deputy General Manager of Production (COO), and reports directly to the General Manager (CEO). The Committee's role is to ensure that dependencies and impacts on biodiversity are systematically identified, assessed, and managed across all power plants. Akenerji's hydroelectric plants are located in sensitive river basin ecosystems, and the Company recognizes the importance of monitoring both environmental dependencies and potential ecological impacts. The Committee reviews biodiversity assessments, environmental impact analyses (EIAs), and site-level monitoring activities carried out as part of permitting and project development. These include compliance with EIA requirements and national conservation regulations, as well as company-led studies on species sensitivity and habitat preservation. Information flows into the Committee through environmental management reports, regulatory updates, and thematic Sustainability Working Groups, which track sectoral developments and international frameworks such as the TNFD. The Committee evaluates risks related to habitat alteration, invasive species, and long-term ecological changes, and identifies opportunities for biodiversity-positive actions such as habitat restoration and catchment-level conservation projects. Outcomes of these reviews are integrated into Akenerji's corporate risk management processes and sustainability disclosures. Biodiversity dependencies and impacts are incorporated into the 5x5 corporate risk matrix, updated every two months, and findings are presented to the Committee for evaluation.

[Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

Climate change

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ No, but we plan to introduce them in the next two years

(4.5.3) Please explain

At Akenerji, monetary incentives for Board members and C-suite executives are not currently linked to specific climate-related performance metrics. While sustainability objectives are included in individual performance scorecards alongside financial, customer, process, and long-term strategic goals, no direct and quantifiable climate KPI has been integrated into the remuneration policy to date. For example, in 2024 senior management targets included a BIST sustainability-related objective as part of the broader performance framework. The remuneration of senior executives, as disclosed in our financial statements, is reported on an aggregate basis without differentiation by environmental or climate-related performance. However, we recognize the importance of aligning incentives with climate targets and plan to establish measurable climate and environmental KPIs within our executive compensation framework over the next two years.

Water

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ No, but we plan to introduce them in the next two years

(4.5.3) Please explain

At Akenerji, monetary incentives for Board members and C-suite executives are not currently linked to specific water-related performance metrics. While sustainability objectives, including water efficiency, compliance with discharge regulations, and effective resource management, are integrated into operational practices and individual performance scorecards, these elements are not yet formalized as direct criteria in executive remuneration. Senior executive compensation is reported in aggregate without disaggregation by environmental or water-related performance. However, given the strategic importance of hydrological conditions for our hydroelectric portfolio, we plan to incorporate measurable water-related KPIs into our incentive structure within the next two years to strengthen accountability and ensure alignment with long-term sustainability goals.

[Fixed row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?

Does your organization have any environmental policies?
Select from: ✓ Yes

[Fixed row]

(4.6.1) Provide details of your environmental policies.

Row 1

(4.6.1.1) Environmental issues covered

Select all that apply

- ✓ Climate change
- ✓ Water
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(4.6.1.4) Explain the coverage

Our approach to environmental issues is defined by our Sustainability Policy, which is aligned with the Paris Climate Agreement, the United Nations Sustainable Development Principles and relevant national legislation. We are committed to reducing our GHG emissions, improving energy and resource efficiency and advancing the transition to low-carbon energy sources. This commitment is supported by investments in renewable energy projects, effective water and waste management practices and initiatives that contribute to the circular economy through zero waste principles. We also place importance on biodiversity conservation and the development of nature-compatible business models. These actions directly contribute to the United Nations Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and Clean Energy), SDG 12 (Responsible Production and Consumption), and SDG 13 (Climate Action). Environmental and strategic objectives are regularly reviewed at the Board of Directors level, ensuring that adequate resources are allocated, performance is monitored, and continuous improvement is achieved to safeguard both the environment and long term business resilience.

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to a circular economy strategy
- ☑ Commitment to comply with regulations and mandatory standards
- ✓ Commitment to take environmental action beyond regulatory compliance
- ☑ Commitment to respect legally designated protected areas

Water-specific commitments

- ☑ Commitment to control/reduce/eliminate water pollution
- ☑ Commitment to reduce water consumption volumes
- ☑ Commitment to reduce water withdrawal volumes
- ☑ Commitment to the conservation of freshwater ecosystems

Social commitments

- ☑ Adoption of the UN International Labour Organization principles
- ✓ Commitment to promote gender equality and women's empowerment
- ☑ Commitment to respect internationally recognized human rights

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

☑ Yes, in line with the Paris Agreement

(4.6.1.7) Public availability

Select from:

✓ Publicly available

(4.6.1.8) Attach the policy

Akenerji Sustainability Policy.pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

- ☑ Task Force on Climate-related Financial Disclosures (TCFD)
- ☑ Task Force on Nature-related Financial Disclosures (TNFD)
- ✓ UN Global Compact
- ✓ Other, please specify :UN Principles for Responsible Investment (UNPRI)

(4.10.3) Describe your organization's role within each framework or initiative

Akenerji integrates global frameworks and collaborative initiatives into its sustainability and governance practices. In line with the recommendations of TCFD and TNFD, we systematically evaluate our dependencies, impacts, risks and opportunities across our hydro, wind, natural gas combined cycle power plants and value chain, and we are recognized as the first energy company in Türkiye to be a TNFD adopter. As a signatory of the UN Principles for Responsible Investment (UN PRI), we incorporate ESG considerations into investment analysis and decision-making, align our ownership practices with these principles, and require investee organizations to disclose their ESG performance while supporting the wider adoption of responsible investment standards in the sector. In addition, as a signatory of the UN Global Compact, we ensure compliance with its principles across all operations, disclose ESG performance comprehensively in our Integrated Annual Report, and expect our service providers to meet the same standards, with review mechanisms in place to evaluate non-compliance.

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

- ✓ Yes, we engaged directly with policy makers
- ✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

☑ Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

✓ Paris Agreement

(4.11.4) Attach commitment or position statement

akenerji-integrated-2024.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

V No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

Akenerji applies a structured governance process to ensure that all external engagement activities remain consistent with our environmental and sustainability related commitments. Our views on the Draft Climate Law, Draft Emissions Trading System Regulation, and Draft Carbon Credit and Offset Regulation are prepared through collaboration between relevant departments under the coordination of the Sustainability Committee. These drafts are reviewed to confirm alignment with our decarbonization targets and renewable energy strategy. Once approved by senior management, Akenerji's official positions are shared with YASED and TÜSİAD, and submitted to the Climate Change Presidency.

[Fixed row]

(4.11.1) On what policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with policy makers in the reporting year?

Row 1

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Türkiye Sustainability Reporting Standards (TSRS) - IFRS S1&S2 aligned disclosure standards (governance, strategy, risk management, metrics & targets)

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

✓ Climate change

Water

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Low-impact production and innovation

✓ Water use and efficiency

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

Turkey

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- ✓ Participation in working groups organized by policy makers
- ☑ Other, please specify: Participated in the Public Oversight Authority (KGK) government-led workshop

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Türkiye Sustainability Reporting Standards (TSRS) are directly aligned with the IFRS S1 and S2 standards and follow the TCFD framework, requiring disclosure on governance, strategy, risk management, and metrics and targets. This regulation is highly relevant to Akenerji's environmental commitments and transition plan because it mandates clear reporting of sustainability and climate-related risks, opportunities, metrics, and targets, as well as obtaining third-party limited assurance for mandatory disclosures. Our engagement focused on understanding implementation timelines, assurance requirements, and data expectations to ensure that our transition strategy, emission reduction targets, and risk management processes are transparently communicated and fully compliant. Success is measured by our ability to publish a TSRS-compliant report with third-party assurance, demonstrating accurate and decision-useful disclosure of our climate and sustainability performance. Success metrics include: (i) timely publication of our TSRS report after completion of third-party assurance, (ii) full compliance with mandatory TSRS disclosure requirements, (iii) internal process alignment (controls, data lineage, and governance) validated by audit/assurance findings, and (iv) stakeholder feedback (investors etc.) indicating improved comparability and transparency.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

✓ Paris Agreement [Add row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

☑ Other trade association in Europe, please specify :TUSIAD (Turkish Industry and Business Association) and YASED (International Investors Association)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

✓ Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ No, we did not attempt to influence their position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Akenerji's policy positions on the Draft Climate Law, the Emissions Trading System (ETS) Regulation, and the Carbon Credit and Offset Regulation are fully consistent with those of both TÜSİAD and YASED, as all parties advocate for the timely and effective implementation of carbon pricing and clear regulatory frameworks to support Türkiye's low-carbon transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

0

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

✓ Paris Agreement [Add row]

(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) **Publication**

Select from:

☑ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

✓ GRI

IFRS

✓ TCFD

(4.12.1.3) Environmental issues covered in publication

- ✓ Climate change
- ✓ Water
- ✓ Biodiversity

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

Strategy

☑ Governance

☑ Emission targets

Emissions figures

☑ Risks & Opportunities

✓ Value chain engagement

✓ Public policy engagement

✓ Water accounting figures

☑ Content of environmental policies

(4.12.1.6) Page/section reference

Governance: 140-198 Public policy engagement: 71 Risk & Opportunities: 75-77, 83 Strategy: 66-83 Value chain engagement: 72-73 Emissions figures: 130-131 Emission targets: 84 Water accounting figures: 138-139

(4.12.1.7) Attach the relevant publication

akenerji-integrated-2024.pdf

(4.12.1.8) Comment

We publish our governance, strategy, risks and opportunities, and environmental metrics and targets in the Integrated Annual Report for 1 January–31 December 2024. The report follows GRI Standards and summarizes our 2024 sustainability performance in line with the Integrated Value Creation Model of the IIRC under the IFRS Foundation.

Row 2

(4.12.1.1) Publication

Select from:

✓ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

✓ IFRS

✓ Other, please specify: Türkiye Sustainability Reporting Standards (TSRS)

(4.12.1.3) Environmental issues covered in publication

Select all that apply

- ✓ Climate change
- Water

(4.12.1.4) Status of the publication

Select from:

✓ Underway - this is our first year

(4.12.1.5) Content elements

Select all that apply

Strategy

☑ Governance

Emission targets

☑ Risks & Opportunities

✓ Water accounting figures

(4.12.1.8) Comment

We prepared our first report in line with the Türkiye Sustainability Reporting Standards (TSRS), which are the national equivalents of IFRS S1 and S2. The report discloses our governance, strategy, risk management, and metrics and targets in accordance with these standards. Following the completion of the independent third-party assurance process, the report will be made publicly available.

[Add row]

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

(5.1.1) Use of	scenario	analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Annually

Water

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Annually

[Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

☑ IEA STEPS (previously IEA NPS)

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Policy

Market

Liability

Technology

Acute physical

☑ Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 2.5°C - 2.9°C

(5.1.1.7) Reference year

2017

(5.1.1.8) Timeframes covered

Select all that apply

☑ 2025

✓ 2030

☑ 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

Cost of capital

Stakeholder and customer demands

- ☑ Impact of nature footprint on reputation
- ✓ Sensitivity to inequity of nature impacts

Regulators, legal and policy regimes

- ☑ Global regulation
- ✓ Level of action (from local to global)
- ☑ Global targets
- ☑ Methodologies and expectations for science-based targets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

The STEPS scenario is the reference scenario featured in the International Energy Agency's (IEA) annual World Energy Outlook reports, reflecting only the impact of current policies and officially announced targets. STEPS which was developed based on the assumption that current policies will continue, is not fully consistent with the 1.5°C target. However, this scenario was chosen to assess developments in carbon markets and potential risks from a realistic perspective. The following assumptions have been used in the scenario. - Global energy demand continues to grow, but the rate of increase slows down thanks to efficiency measures. - Fossil

fuels continue to play a role; demand for oil and natural gas remains near peak levels, while coal use continues in some regions. -Carbon prices remain at an average level of USD 40–50/ton until 2030, and widespread pricing is not seen on a global scale. - The share of renewable energy increases, but at a limited rate; by 2030, its share in global electricity reaches approximately 40–45%. - Investments in fossil fuel production do not completely cease, with natural gas retaining its importance as a transition fuel. - Grid modernization takes place, but smart grids and storage solutions develop only partially and regionally. - Electric vehicle sales increase, but by 2030, the majority of the vehicle stock consists of internal combustion engines. - Electrification gains momentum in developed countries but progresses more slowly in developing countries. - Hydrogen, carbon capture (CCUS), and similar new technologies remain limited to pilot scale, with widespread adoption postponed to later years. - Global emissions decrease, but a pace consistent with the net-zero target is not achieved; a temperature increase of 2.4–2.6 °C is projected by 2100.

(5.1.1.11) Rationale for choice of scenario

STEPS) is designed to provide insight into the prevailing direction of energy system progress based on a detailed examination of the current policy landscape. STEPS has been chosen to assess developments in carbon markets and potential risks from a realistic perspective.

Water

(5.1.1.1) Scenario used

Water scenarios

✓ WWF Water Risk Filter

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

- Acute physical
- Chronic physical

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ✓ Number of ecosystems impacted

Regulators, legal and policy regimes

Global regulation

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

It is assumed that the WWF Water Risk Filter provides a holistic assessment of water-related risks, covering physical, regulatory and reputational aspects of Akenerji's operations. Alignment with Global Standards: The tool is aligned with global frameworks such as SDG 6.5 and provides a globally recognised context for assessing water risks, taking into account socio-economic trends (SSP2) and climate scenarios. Geographical Accuracy: The tool is assumed to accurately reflect local water risks, taking into account the specific geographical and ecological conditions of each facility. Scaled Risk Assessment: The risk scale from very low to very high is assumed to facilitate targeted risk management by providing a detailed view of water risks. Uncertainties: Climate Change Impacts: The future impacts of climate change on water availability and quality are uncertain, which may affect the accuracy of risk estimates in the long term. Changes in Policies: Uncertainty in future water policies and regulations can affect risk outcomes by potentially changing the expected regulatory environment. Stakeholder Perceptions: Reputational risk assessments are based on stakeholders' current perceptions, and these perceptions may change over time, affecting the assessment of reputational risks. Limitations: Data Limitations: The accuracy of risk assessment is limited by the quality and availability of local water data, which may not always capture the full complexity of water risks. Static Scenarios: The WWF Water Risk Filter can provide a snapshot of risk under current conditions, but may not fully account for dynamic changes in water systems and ecosystems over time. Simplifying Complex Systems: While the tool covers multiple risk dimensions, it may simplify complex hydrological and ecological interactions, leading to an incomplete picture of risk in certain contexts.

(5.1.1.11) Rationale for choice of scenario

WWF Water Risk Filter is a critical tool for Akenerji to comprehensively assess water risks, comply with global standards and develop sustainable water management strategies. Akenerji uses the WWF Water Risk Filter tool to comprehensively assess the water risks and water dependency of its operations. The main reasons for using this tool are as follows: Comprehensive Water Risk Assessment: WWF Water Risk Filter is an integrated tool that can comprehensively assess different dimensions of water risks such as physical, regulatory and reputational. By using this tool, Akenerji is able to analyse various risk factors such as water scarcity, flood risk, water quality and ecosystem services in the regions where it operates in detail and assess their impact on its operations. Compliance with Global Standards: WWF Water Risk Filter has been developed in line with the Sustainable Development Goals (SDGs) and SDG 6.5 (Integrated Water Resources Management). By using the WWF Water Risk Filter tool, Akenerji aims to conduct water risk assessments in accordance with global standards and harmonise its water management strategies with international best practices. Strategic Planning and Risk Management: WWF Water Risk Filter provides detailed analyses of Akenerji's water risks that can be integrated into strategic planning and risk management processes. Assessment of Local and Regional Risks: WWF Water Risk Filter has the ability to assess water risks at local and regional level. Through this tool, Akenerji is able to analyse water risks specific to the location of each power plant and thus develop location-based risk management strategies.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP5

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- ☑ Chronic physical
- Policy
- ☑ Reputation
- Technology

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 4.0°C and above

(5.1.1.7) Reference year

2017

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2030

☑ 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

- ✓ Cost of capital
- ✓ Sensitivity of capital (to nature impacts and dependencies)

Stakeholder and customer demands

✓ Impact of nature footprint on reputation

☑ Sensitivity to inequity of nature impacts

Regulators, legal and policy regimes

- ✓ Level of action (from local to global)
- ☑ Global targets

Direct interaction with climate

- ✓ On asset values, on the corporate
- ✓ Perception of efficacy of climate regime

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

RCP8.5 assumes limited climate policy implementation and continued reliance on fossil fuels. CO₂ concentrations reach ~1370 ppm by 2100, with global warming exceeding 4°C compared to pre-industrial levels. Assumptions include high population growth, uneven economic development, and delayed deployment of renewable technologies. Energy systems remain carbon-intensive, while deforestation and resource pressure worsen climate impacts. Uncertainties include the frequency and severity of extreme events, regional variability of water stress, and the economic consequences of widespread physical damages. Constraints arise from limited predictability of long-term climate system feedbacks and incomplete data on cascading socio-economic impacts.

(5.1.1.11) Rationale for choice of scenario

This scenario represents a "business as usual" pathway and provides a worst-case view of physical climate risks. It is essential for testing the resilience of Akenerji's assets, operations, and supply chains under severe climate outcomes. Including this high-risk pathway ensures preparedness for long-term disruptive impacts on markets, costs, and resource availability.

[Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

☑ Risk and opportunities identification, assessment and management

- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy
- Capacity building
- ☑ Target setting and transition planning

(5.1.2.2) Coverage of analysis

Select from:

Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Scenario analysis has confirmed the resilience of Akenerji's business strategy under multiple climate futures, while highlighting the scale of transformation required. Our company is assessing the risk of carbon price increases based on the assumption that, within the framework of the IEA's STEPS scenario, carbon prices will reach the level of the European Union's EU ETS carbon prices by 2030 and a 50% free carbon allocation will be provided. In this context, the Turkish Emissions Trading System (ETS) is expected to be implemented by 2026, and this development is expected to have operational and financial impacts in the 2026-2035 period. According to the scenario analyses conducted, with the rise in carbon prices, the implementation of the Turkish Emissions Trading System (ETS) is expected to have a positive net EBITDA impact of 1–2% on our company's future carbon-related revenues and expenses. However, a possible one-year delay in the implementation of the Turkish Emissions Trading System (ETS) would prevent this revenue opportunity from being realized on time; in this case, a negative opportunity cost of approximately 1-2% on annual EBITDA would arise. Resilience assessments, including our response to the impacts identified in our climate scenario analysis, will have implications for our strategy and business model. Our company may need to shape its future energy transition strategies and shift towards climate-friendly investments. Renewable energy plants play a significant role in achieving this goal. The use of natural gas will gradually decrease and be replaced by renewable energy sources. In terms of climate risks, the company's adaptation capabilities will become critical. Extreme weather events, water scarcity, and changing climate conditions may increase the operating costs of hydroelectric power plants. To address climate-related risks and capitalize on climate-related opportunities, including responding to the impacts identified in climate scenario analysis, the status of financial resources at Akenerji can be summarized as follows: Akenerji is effectively directing its financial resources to increase its resilience against the physical and transition risks anticipated under climate scenarios and to diversify its production portfolio. In this context, within 2024, a license amendment was made to increase the total installed capacity of the Ayyıldız Wind Power Plant to 34.4 MWe by obtaining approval for an additional 6.2 MW capacity. In addition, it continued feasibility studies for hybrid power plant installation projects at existing power plants such as Erzin DGKÇ and Burç Bendi HES. In addition to our investments, the Kemah Hydroelectric Power Plant project, planned to be established in Erzincan province with an installed capacity of 198 MW and expected to generate an average of 560 GWh of electricity per year, is maintained in our portfolio with the design and permit processes completed, ready to be implemented when the technical and financial conditions are met. To finance all these projects, Akenerji is increasing its credit limits with financial institutions and working with banks to secure medium- and long-term, cost-effective project financing. Akenerji has the ability to redeploy existing assets, repurpose them, upgrade them, or decommission them. Thanks to its strong and sustainable financial structure, stable cash flow, and solid equity level, it has the ability to support capital investments and asset optimization. Furthermore, its capacity to access long-term financing sources and low-cost borrowing opportunities further strengthens this flexibility. Impact of Akenerji's current and planned investments on climate mitigation, adaptation, and climate resilience opportunities: Carbon costs at ETS-covered production facilities vary, particularly for our portfolio, which includes natural gas, hydroelectric, and wind power plants. A 6.2 MW capacity increase is planned at the Ayyıldız Wind Power Plant, and a 7.8 MW hybrid solar energy integration is planned at the Erzin Natural Gas Power Plant. In addition, hybrid solar power plant opportunities are being evaluated for the Burç Bendi Power Plant. In addition to our investments, the Kemah Hydroelectric Power Plant project, with an installed capacity of 198 MW planned to be established in Erzincan province and expected to generate an average of 560 GWh of electricity per year, is also included in our portfolio with the design and permitting processes completed, ready to be implemented when the technical and financial conditions are met. These investments aim to increase the share of renewable energy in our portfolio.

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- Strategy and financial planning
- ☑ Resilience of business model and strategy
- Capacity building
- ☑ Target setting and transition planning

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Thanks to the WWF Water Risk Filter analysis, Akenerji has identified critical areas to focus on to increase its operational sustainability and thus strengthened its overall business model in line with environmental dependencies, impacts, risks and opportunities. Production Performance and Planning: The decrease in production at HES due to drought causes production deviations across the portfolio. However, this effect is systematically managed by bringing production sources such as Erzin NGCCPP into operation and reflecting them in the market through Pricing Scenarios. Investment and Valuation Strategy: Drought scenarios are included in financial models. This ensures that valuations are not negatively affected, and risks are reflected and reported in advance in the financials. Short Term (0–2 Years): Periodic production declines may occur at hydroelectric power plants (HES) due to normal meteorological fluctuations. However, thanks to our portfolio diversity and balancing capacity, the impact of this risk remains limited. Particularly during dry periods, the decline in HES production is offset by generating electricity from natural gas through the Erzin Natural Gas Combined Cycle Power Plant, thus maintaining the production-portfolio balance. Thanks to this structure, short-term production deviations can be managed operationally, and revenue losses remain at a compensable level. Medium Term (2–5 Years): According to the IPCC's SSP5-8.5 high emissions scenario, rainfall is projected to decrease by approximately 10% by 2030. This decrease may cause a drop in water flow at our hydroelectric power plants with a total installed capacity of 285 MW, located mainly in the Eastern Mediterranean, Central Anatolia, and Southern Marmara basins, potentially leading to a production loss of up to 10%. In this context, the financial impact of the risk is "very high" according to internal assessment. However, our balanced production portfolio, consisting of hydroelectric power plants, natural gas, and wind resources, offers the

production at the Erzin Natural Gas Combined Cycle Power Plant. Thanks to this strategic capacity, this risk, which has a very high potential, is kept under control through effective management practices. Long Term (5–20 Years): According to the IPCC's SSP5-8.5 scenario, rainfall is projected to decrease by approximately 17% by 2050. This situation may permanently affect the production capacity of our hydroelectric power plants, which is dependent on the water regime in the long term. Therefore, strengthening climate-resilient production infrastructure and increasing resource diversity have become priorities in our business model. Strategic assessments are being made regarding our portfolio structure (e.g., reviewing the weight of hydroelectric power, increasing the role of resources less sensitive to climate, such as natural gas and wind). Drought risk is addressed in production planning and portfolio management strategies in line with its anticipated effects. Value Chain: Portfolio Balance Production losses due to drought are balanced by the NGCCPP with different sources. This balanced structure increases the portfolio's resilience to environmental shocks, reducing the fragility of the value chain. Market Pricing Impact: Drought scenarios are incorporated into pricing through long-term price forecasting studies and transparently reflected in market mechanisms; this aligns both the business model and value chain processes with strategic risk management..

[Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

☑ Yes, we have a climate transition plan which aligns with a 1.5°C world

(5.2.3) Publicly available climate transition plan

Select from:

✓ No

(5.2.4) Plan explicitly commits to cease all spending on, and revenue generation from, activities that contribute to fossil fuel expansion

Select from:

☑ No, but we plan to add an explicit commitment within the next two years

(5.2.6) Explain why your organization does not explicitly commit to cease all spending on and revenue generation from activities that contribute to fossil fuel expansion

Akenerji is actively engaged in the development and implementation of its climate transition plan, focusing on strategic investments and the adoption of emission reduction technologies to align with global decarbonization efforts. Our transition strategy encompasses significant investments in renewable energy projects, energy storage solutions, and low-carbon technologies aimed at reducing our overall carbon footprint in the medium and long term. As part of our commitment to climate action, we are currently evaluating the Science-Based Targets initiative framework to ensure our emission reduction targets are scientifically aligned with the Paris Agreement's goals. While we are making significant progress in our climate transition efforts, it is crucial to emphasize that our approach is guided by a commitment to accuracy and transparency. Sharing premature or speculative information regarding our transition plan or emission reduction targets could lead to misleading interpretations by the public and stakeholders. Therefore, until our targets and plans are thoroughly evaluated and officially established, we aim to avoid disseminating any information or assumptions that could be considered misleading or incorrect. Our priority remains on developing a robust, scientifically grounded climate transition plan that provides clear and transparent pathways to reducing emissions. We are dedicated to ensuring that the information we share with the public and our stakeholders is accurate, validated, and reflective of our ongoing efforts to contribute to a sustainable and low-carbon future. By the time our SBTi submission and climate transition strategy are finalized, we will be prepared to communicate our detailed plans, targets, and progress in a manner that upholds our commitment to transparency and aligns with industry best practices. Until then, we will continue to focus on advancing our investment in emission reduction technologies and renewable energy projects as part of our overarching strategy to support the global

(5.2.7) Mechanism by which feedback is collected from shareholders on your climate transition plan

Select from:

☑ We do not have a feedback mechanism in place, but we plan to introduce one within the next two years

(5.2.10) Description of key assumptions and dependencies on which the transition plan relies

Akenerji's strategy includes a comprehensive climate transition plan that outlines our pathway to align with global climate goals and ensure the long-term sustainability of our business model in a net-zero carbon economy. Our climate transition plan is built on several key assumptions and dependencies that guide our approach to emission reduction and sustainable growth. Transition to Renewable Energy Sources: Akenerji assumes a significant shift towards renewable energy sources as a core component of its transition plan. We anticipate that wind, solar, and hydroelectric power will play a pivotal role in our energy mix, gradually replacing fossil fuels. This assumption aligns with our ongoing investments in projects like Kemah HES and hybrid solar systems. Technological Advancements in Emission Reduction: Our Plan assumes continuous advancements in emission reduction technologies, such as energy storage, and battery technologies. These technologies are expected to become more efficient and cost-effective, enabling us to reduce our carbon footprint more rapidly. Regulatory and Policy Support: Our climate transition strategy assumes that governments and regulatory bodies will continue to implement policies that support the transition to a low-carbon economy. Our transition plan includes expectations of carbon pricing mechanisms, renewable energy incentives, and climate-related regulations that will drive the adoption of clean energy solutions. Key Dependencies: The successful implementation of our climate transition plan is dependent on securing adequate capital investment to finance renewable energy projects, energy storage systems, and other low-carbon technologies. Our plan depends on the continued maturity and scalability of renewable energy technologies and energy storage systems. The deployment of large-scale battery storage, smart grids, and carbon capture technologies is crucial for achieving our emission reduction targets and ensuring grid stability.

(5.2.13) Other environmental issues that your climate transition plan considers

Select all that apply

☑ No other environmental issue considered [Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- Products and services
- ✓ Investment in R&D
- Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Products and services

(5.3.1.1) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

During the first half of 2024, intensive workshops were organised with the participation of all managers at manager level and above. In these workshops, sector-wide threats and opportunities were evaluated, the strengths and weaknesses of the company were analysed, and joint brainstorming sessions were held to design Akenerji's future. This process resulted in the determination of the company's main and sub-targets, the actions to be taken in the short, medium and long term, and the projects that need to be implemented in line with its strategic goals. In the second half of 2024, an inclusive risks and opportunities survey was carried out to deepen these insights. The survey was prepared by Akenerji's consultant in parallel with the TCFD and CDP frameworks and conducted online with the participation of senior and middle management. A total of 243 employees—representing 81% of the workforce—participated. Results were analysed across three categories: consolidated responses, offices, and facilities. Importantly, the prioritisation of risks and opportunities identified in this survey was further supported and validated by climate scenario analysis, ensuring that the findings are resilient under different policy and climate pathways. Akenerii's scenario analysis has highlighted two key risk areas with the potential to materially affect both financial performance and business strategy; physical risks related to hydropower generation under drought conditions, and transition risks arising from the introduction of the Emissions Trading System (ETS). The first major risk is the decline in electricity generation from hydroelectric power plants (HEPPs) during prolonged drought periods. As water availability decreases, production from assets such as Uluabat and Burç Bendi HEPPs may fall below expected levels, directly impacting revenues and cash flow. This risk is amplified by the increasing frequency and severity of climate-related water stress events projected under climate scenarios. Reduced generation not only lowers total sales volume but also raises the cost per unit of electricity produced, thereby exerting pressure on operating margins. To mitigate this risk, Akenerji is diversifying its generation portfolio with wind, solar, and hybrid projects that reduce dependence on hydrological variability. Investments in advanced water management practices and technologies at HEPP sites are also prioritised to optimise efficiency and limit revenue losses in dry years. Through I-REC certification and green electricity offerings, Akenerji responds to rising demand for traceable, lowcarbon energy. By increasing renewable capacity, the company strengthens its ability to meet evolving customer preferences and capture market premiums.

Investment in R&D

(5.3.1.1) Effect type

Select all that apply

Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- ✓ Climate change
- Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

With the implementation of climate-focused investments and the rollout of sustainability strategies, there will initially be an increase in capital expenditures. This may temporarily have a negative impact on cash flows. However, as these investments are implemented, operational efficiency will improve, carbon-related cost risks will decrease, and sustainable growth will be supported. As a result of these developments, both an improvement in cash flows and a positive impact on financial performance in the medium and long term are anticipated. Akenerji allocates increasing R&D and CAPEX budgets to hybrid power plants, solar and wind projects and related investments. These projects not only reduce emissions but also enhance system flexibility and resilience, positioning Akenerji at the forefront of low-carbon technologies.

Operations

(5.3.1.1) Effect type

Select all that apply

Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

In the studies we conducted, we evaluated the threats and opportunities in Akenerji and the sector in which we operate, analysed the strengths and weaknesses of our company. As a final stage, we designed the future of our company with a brainstorming session in which we discussed our common foresights with all participants. In this context, we determined the main and sub-targets of our company, the actions we need to take within the organisation in the short, medium and long term in order to achieve these targets, and the projects that need to be carried out. In this context, we determined the areas that we will be affected operationally and our transition risks as follows. Obligations and regulations regarding existing products, services or processes: Akenerji continuously monitors national and international regulatory developments and aligns its operations with new compliance requirements. The company implements ISO 14001 and ISO 50001 management systems and integrates sustainability criteria into operational processes to ensure full regulatory conformity. Carbon pricing mechanisms: In anticipation of the Emissions Trading System (ETS) in Türkiye, Akenerji has prioritised portfolio diversification toward renewables and hybridisation of existing natural gas assets with solar. These steps lower emission intensity, reduce allowance obligations, and limit exposure to carbon cost volatility.

[Add row]

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

- Revenues
- ✓ Direct costs
- ✓ Indirect costs
- Capital expenditures

(5.3.2.2) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Environmental risks and opportunities are fully integrated into Akenerji's financial planning. The impacts of climate-related risks on future cash flows, capital expenditures and long-term profitability are assessed. Carbon pricing scenario analyses are used to assess how future legislative changes may affect the Company's financial performance and budget is allocated for resilience building projects. Akenerji's financial planning is deeply affected by environmental risks and opportunities. By proactively managing these risks and capitalising on opportunities through targeted investments in renewable energy, energy storage and hybrid projects, we secure the Company's long-term sustainability and financial strength in the face of evolving environmental challenges. Environmental risks and opportunities are an integral part of our financial planning and decision-making processes. The increasing frequency of extreme weather events, changing legal regulations and the transition to a low carbon economy have significant impacts on our operations and long-term strategy. Regulatory and Market Risks:Carbon

Pricing and Emission Regulations: The potential introduction of carbon pricing mechanism and stricter emission regulations in Turkey and globally directly affects our financial planning. In order to mitigate the increased cost risk due to carbon pricing, Akenerji is making the necessary budgetary efforts to invest in low-carbon technologies and renewable energy projects such as wind, solar and hydroelectricity. These investments are in line with our broader strategy to reduce our carbon footprint as well as reduce our exposure to future carbon costs. Energy Transition Risks: The global transition from fossil fuels to renewable energy creates both challenges and opportunities. Akenerji has proactively integrated these risks into its financial planning by investing in energy storage systems and battery technology to ensure and optimise the use of intermittent renewable resources. Extreme Weather Events: Increasing frequency of droughts, floods and heat waves pose a risk to our hydroelectric power plants and energy generation capacity. To mitigate these risks, Akenerji has allocated financial resources for infrastructure resilience projects and monitoring systems that will help optimise water resources management. In addition to minimising physical risks, these investments also ensure the continuity of our energy generation in extraordinary weather conditions.

Row 2

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

Revenues

✓ Direct costs

(5.3.2.2) Effect type

Select all that apply

Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

✓ Climate change

✓ Water

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Financial Opportunities Renewable Energy Investments: Increasing demand for clean energy and environmental opportunities such as government incentives for renewable energy projects have influenced Akenerji's capital allocation strategy. We increased our investments in wind, solar and hydroelectric projects that will increase our revenue stream while reducing our carbon footprint. These investments are expected to provide long-term financial returns by positioning Akenerji as an important player in the transition to a low-carbon energy market. Energy Efficiency and Cost Savings: Akenerji has succeeded in reducing its operational costs by

implementing energy efficiency measures and improving operational technologies. Thanks to these initiatives, which we include in our financial planning, we increase our profitability by reducing energy consumption, operational costs and emissions.

[Add row]

(5.4) In your organization's financial accounting, do you identify	spending/revenue that is aligned with your	organization's
climate transition?		

Identification of spending/revenue that is aligned with your organization's climate transition
Select from: ☑ No, but we plan to in the next two years

[Fixed row]

(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

(5.5.1) Investment in low-carbon R&D

Select from:

✓ Yes

(5.5.2) Comment

Akenerji does not operate a dedicated in-house R&D center; however, the company actively invests in the development and implementation of low-carbon products and services through strategic allocation of resources to innovative technologies. Rather than carrying out primary R&D activities itself, Akenerji's approach is to support the sector's low-carbon transition by adopting and deploying technologies that are already proven or have reached maturity in the energy industry. The company continuously directs significant investments into renewable energy projects (wind, solar, hydro), hybrid projects and related technologies. These investments reduce the carbon intensity of its generation portfolio, increase operational efficiency, and strengthen resilience against climate-related risks. For example,

investments in solar and wind capacity combined with emerging storage solutions enable Akenerji to transition its energy portfolio toward a low-carbon structure and significantly lower its carbon footprint. Akenerji's investment strategy aligns with the recommendations of the Task Force on Climate-related Financial Disclosures (TCFD), which emphasize the importance of developing and deploying low-carbon technologies to mitigate transition risks. By focusing its financial resources on renewable capacity expansion and innovative technologies. Akenerji ensures that its long-term revenue streams remain protected under evolving climate policies and carbon pricing regimes.

[Fixed row]

(5.5.7) Provide details of your organization's investments in low-carbon R&D for your sector activities over the last three years.

Row 1

(5.5.7.1) Technology area

Select from:

✓ Wind energy generation

(5.5.7.2) Stage of development in the reporting year

Select from:

✓ Large scale commercial deployment

(5.5.7.3) Average % of total R&D investment over the last 3 years

1

(5.5.7.4) R&D investment figure in the reporting year (unit currency as selected in 1.2) (optional)

1

(5.5.7.5) Average % of total R&D investment planned over the next 5 years

1

(5.5.7.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

Over the past three years, Akenerji has directed significant resources into low-carbon research and development activities, with a focus on expanding renewable energy generation and integrating hybrid solutions into its existing portfolio. A key example is the investment in the Ayyıldız Wind Power Plant, where a 6.2 MW capacity increase has been designed and approved, bringing the total installed capacity to 34.4 MWe. This investment reflects not only the deployment of proven renewable technology but also the application of technical and engineering studies to optimise wind resource use, increase efficiency, and reduce carbon intensity in the company's overall generation mix. By increasing wind power capacity, Akenerji reduces its reliance on hydroelectric generation, which is increasingly exposed to climate-related physical risks such as drought and water scarcity. The project therefore enhances operational resilience, while directly contributing to national and global low-carbon transition targets. The Ayyıldız capacity increase has been accompanied by R&D studies on advanced turbine efficiency, site optimisation, and integration into the company's broader renewable energy portfolio. This investment reflects the deployment of proven renewable technology, as well as the application of technical and engineering studies to optimise wind resource use, increase efficiency, and reduce carbon intensity in the company's overall generation mix. As part of the transition strategy, Akenerji will incorporate innovative technologies that will increase operational efficiency and further reduce emissions, enabling better management of emission reduction targets and climate-related risks and opportunities.

Row 2

(5.5.7.1) Technology area

Select from:

☑ Hydropower energy generation

(5.5.7.2) Stage of development in the reporting year

Select from:

✓ Large scale commercial deployment

(5.5.7.3) Average % of total R&D investment over the last 3 years

1

(5.5.7.4) R&D investment figure in the reporting year (unit currency as selected in 1.2) (optional)

1

(5.5.7.5) Average % of total R&D investment planned over the next 5 years

(5.5.7.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

In addition to wind and hybrid solar projects, Akenerji has continued to allocate resources to low-carbon R&D through the development of new hydroelectric capacity. A notable example is the Kemah Hydroelectric Power Plant project in Erzincan, with an installed capacity of 198 MW and an expected annual generation of approximately 560 GWh. The project has already completed its design and permitting stages and remains in the company's portfolio to be implemented once technical and financial conditions are favorable. This project represents more than an expansion of renewable capacity; it incorporates engineering and feasibility studies to optimise hydrological resource management, strengthen resilience against seasonal variability, and integrate the plant into Akenerji's broader renewable generation system. The technical work carried out for Kemah HES—including environmental and water resource assessments—demonstrates Akenerji's investment in research and development activities that directly support the transition to a low-carbon economy. When the 198 MW Kemah HEPP is commissioned, energy intensity will be significantly reduced in line with the climate transition plan, and significant action will have been taken against operational and financial risk factors that are expected to be affected by climate-related risks. By maintaining the Kemah HES project in its portfolio, Akenerji ensures flexibility to scale renewable investments as market conditions allow, while at the same time contributing to the reduction of carbon intensity in its generation mix.

Row 3

(5.5.7.1) Technology area

Select from:

☑ Other, please specify :Digital technology

(5.5.7.2) Stage of development in the reporting year

Select from:

☑ Full/commercial-scale demonstration

(5.5.7.3) Average % of total R&D investment over the last 3 years

1

(5.5.7.5) Average % of total R&D investment planned over the next 5 years

1

(5.5.7.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

Akenerji invests in advanced digital solutions that support its low-carbon transition by enabling data-driven decision-making and scenario analysis. Systems such as Energy Trade Risk Management, Erzin NGCCPP, Price Forecast and Generator platforms provide real-time insights that allow the company to manage market and carbon-related risks more effectively. Through advanced price modelling tools, the company monitors fluctuations in electricity, natural gas and carbon markets, aligning its investment strategy with market signals and evolving regulatory frameworks such as carbon pricing mechanisms. These software solutions not only strengthen operational flexibility and efficiency but also directly support Akenerji's resilience to transition risks. By embedding these digital systems into its R&D and operational processes, Akenerji enhances its ability to forecast scenarios, optimise renewable dispatch, and reduce exposure to emission costs, thereby protecting long-term profitability while accelerating its move towards a low-carbon future.

[Add row]

(5.7) Break down, by source, your organization's CAPEX in the reporting year and CAPEX planned over the next 5 years.

Geothermal

(5.7.1) CAPEX in the reporting year for power generation from this source (unit currency as selected in 1.2)

0

Hydropower

(5.7.1) CAPEX in the reporting year for power generation from this source (unit currency as selected in 1.2)

1

(5.7.3) CAPEX planned over the next 5 years for power generation from this source as % of total CAPEX planned for power generation over the next 5 years

1

(5.7.5) Explain your CAPEX calculations, including any assumptions

Akenerji does not disclose absolute CAPEX or OPEX figures but provides detailed information on the direction of capital allocation and the assumptions guiding investment planning. In the reporting year, capital expenditure was directed towards renewable expansion, hybridisation of existing assets, and efficiency

improvements. Key projects include a 6.2 MW capacity increase at Ayyıldız Wind Power Plant (raising total installed capacity to 34.4 MW), a 7.8 MW hybrid solar project at the Erzin NGCCPP, hybridisation studies for Burç Bendi HPP, and feasibility for the 198 MW Kemah Hydroelectric Power Plant, with permitting already secured. Smaller-scale projects such as an 11 MW biomass facility in Konya and a 2.17 MW pyrolysis plant in Sungurlu also form part of the portfolio. Looking ahead, the next five years of CAPEX are assumed to continue prioritising renewable generation, hybrid systems, and technologies that lower portfolio carbon intensity. The main calculation principle in CAPEX planning is to ensure resilience against carbon pricing mechanisms (e.g., Turkish ETS) while maintaining competitiveness in electricity markets. Financial assumptions incorporate expected carbon prices, potential increases in interest rates, and the need for long-term, cost-effective project financing. The company anticipates using a mix of external funding sources, including credit limit increases and project finance structures, to support its renewable pipeline. In this context, CAPEX allocation by source is expected to remain focused primarily on wind, solar, hydro, and biomass investments, while fossil-based expenditure will decline steadily. The trend signals a strategic alignment of investments with Akenerji's long-term decarbonisation roadmap, ensuring flexibility in adapting to climate-related risks and opportunities. [Fixed row]

(5.7.1) Break down your total planned CAPEX in your current CAPEX plan for products and services (e.g. smart grids, digitalization, etc.).

Row 1

(5.7.1.1) Products and services

Select from:

☑ Energy management services

(5.7.1.2) Description of product/service

As part of its current CAPEX plan, Akenerji continues to prioritise investments that enhance digitalisation and operational efficiency, thereby supporting the transition to a low-carbon energy system. One example is the Feke-2 Hydroelectric Power Plant project, where significant CAPEX has been allocated to the redesign of the Pl System pages. This investment has facilitated data tracking and improved remote access to the switchboard, providing a modern, user-friendly interface for operators. The redesigned Pl System enables richer content, more effective monitoring, and detailed analysis of plant performance, which in turn improves decision-making for energy optimisation. By enhancing data visibility and operational control, this investment supports higher efficiency in hydroelectric generation and contributes to reducing the carbon intensity of Akenerji's portfolio. Digitalisation projects such as Feke-2 form part of Akenerji's broader CAPEX strategy, which also covers renewable energy expansion, hybridisation of existing assets, and the adoption of new technologies.

Row 2

(5.7.1.1) Products and services

Select from:

✓ Distributed generation

(5.7.1.2) Description of product/service

Akenerji has invested in the revision of the vibration system at the Feke-1 Hydroelectric Power Plant. The primary aim of this project was to support the continuity of generation and improve the safe availability of the plant. By upgrading the vibration monitoring and control system, Akenerji enhanced the operational stability of the facility, reducing the risk of unplanned outages and improving efficiency in daily operation management. This investment contributes to the company's low-carbon strategy by ensuring that hydroelectric assets—key renewable energy sources—can operate more reliably and efficiently. The optimisation of plant performance reduces maintenance needs, prolongs asset life, and supports consistent renewable energy generation.

Row 3

(5.7.1.1) Products and services

Select from:

☑ Energy management services

(5.7.1.2) Description of product/service

Akenerji has invested in the integration of the SFK System into touch panels at the Feke-2 Hydroelectric Power Plant. This digitalisation project was designed to improve the tracking and traceability of SFK instructions. By integrating the system into touch panel technology, operational teams can now monitor and follow instructions more easily and reliably. The investment strengthens operational efficiency and ensures that renewable generation assets operate with higher precision and safety. Improved traceability contributes to better compliance, reduces the risk of errors in daily operation, and enhances the resilience of hydroelectric assets as a low-carbon energy source. This initiative complements other modernisation and digitalisation projects across Akenerii's portfolio.

Row 4

(5.7.1.1) Products and services

Select from:

☑ Other, please specify :Process safety and efficiency

(5.7.1.2) Description of product/service

Akenerji implemented the automation revision of the radial cover at the Himmetli Regulator. The aim of this project was to prevent potential operational accidents and to improve the safety of daily operations. By modernising and automating the system, the company has enhanced the reliability of the regulator and increased the safety standards for plant personnel. This investment directly contributes to operational resilience by reducing the risk of unplanned interruptions and improving the efficiency of renewable hydropower generation. Automation also minimises human error, optimises operational processes, and ensures that critical safety functions are carried out consistently and reliably..

[Add row]

(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

(5.9.1) Water-related CAPEX (+/- % change)

-28

(5.9.2) Anticipated forward trend for CAPEX (+/- % change)

-27

(5.9.3) Water-related OPEX (+/- % change)

-28

(5.9.4) Anticipated forward trend for OPEX (+/- % change)

-27

(5.9.5) Please explain

The reported decrease in water-related capital and operating expenditures compared to the previous year is primarily driven by lower production volumes caused by drought conditions. Net electricity production from Akenerji's hydro fleet fell from 801.03 GWh in 2023 to 625.04 GWh in 2024, which reduced both water usage and Basin Hydrological Observation, Evaluation and Control Service Fees paid annually to the State Hydraulic Works (DSI) that are calculated based on generation volumes. For 2025, figures were estimated using eight months of actual data and four months of projected generation, while 2024 and 2023 values reflect finalized invoices. Company-wide, water-related OPEX represents roughly 1% of total operating expenses, so the observed decline is primarily a result of lower production rather than changes in cost structure.

(5.10) Does your organization use an internal price on environmental externalities?

Use of internal pricing of environmental externalities	Environmental externality priced
Select from: ✓ Yes	Select all that apply ☑ Carbon

[Fixed row]

(5.10.1) Provide details of your organization's internal price on carbon.

Row 1

(5.10.1.1) Type of pricing scheme

Select from:

✓ Shadow price

(5.10.1.2) Objectives for implementing internal price

Select all that apply

- ✓ Set a carbon offset budget
- ✓ Drive low-carbon investment
- ✓ Conduct cost-benefit analysis
- ☑ Identify and seize low-carbon opportunities
- ✓ Influence strategy and/or financial planning

☑ Setting and/or achieving of climate-related policies and targets

(5.10.1.3) Factors considered when determining the price

✓ Alignment to international standards

(5.10.1.4) Calculation methodology and assumptions made in determining the price

Akenerji implements the carbon pricing mechanism as an internal strategy in preparation for future regulatory risks and market conditions. This approach aims to proactively manage the cost impacts of the Turkish Emission Trading System (ETS), which is expected to be operational in 2026, and the parallel regulations with the EU Emission Trading System (EU ETS) Akenerji's internal carbon pricing is based on the allocation mechanisms of the EU ETS and projections for the end of free allowances in 2034. It is projected that Turkey's ETS system will have a similar structure to the EU ETS and carbon prices will gradually increase following the harmonisation process starting in 2026. In this context, Akenerji determines its carbon price projections by taking into account both the EU ETS and the peak year processes specified in Turkey's National Contribution Declaration (NDC).

(5.10.1.5) Scopes covered

Select all that apply

✓ Scope 1

✓ Scope 2

(5.10.1.6) Pricing approach used – spatial variance

Select from:

✓ Differentiated

(5.10.1.7) Indicate how and why the price is differentiated

Akenerji operates a diverse portfolio of energy assets, including natural gas power plants, hydroelectric power stations, wind farms, and solar energy projects. Given this diversity, a single uniform internal carbon price would not accurately reflect the varying levels of carbon intensity and financial risks associated with each asset type. By adopting a differentiated approach, we can apply different internal carbon prices that are tailored to the unique carbon footprint and financial impact of each type of asset within our portfolio. The differentiated approach allows us to more effectively manage carbon-related risks and enhance financial resilience. For example, we apply a higher internal carbon price to natural gas power plants to reflect the greater regulatory and market risks associated with their higher carbon emissions. Incentivizes the transition toward cleaner technologies and drives investments in low-carbon projects, such as renewables and energy storage systems. Conversely, a lower internal carbon price is applied to renewable energy projects, reflecting their lower exposure to carbon pricing mechanisms. Lastly, Using a differentiated internal carbon price provides a more nuanced understanding of the potential financial impact of carbon regulations on various projects. By applying different carbon prices to different projects, Akenerji can better evaluate the long-term profitability and risk of future investments.

(5.10.1.8) Pricing approach used – temporal variance

Evolutionary

(5.10.1.9) Indicate how you expect the price to change over time

Our carbon pricing expectations take a long-term view of the evolving carbon market in Turkey and the EU. We expect carbon prices to increase significantly as free allowances in the Turkish ETS, which is expected to be launched in 2026, are phased out as in the EU ETS and the ETS system becomes more stringent. We envisage the introduction of a carbon pricing mechanism in Turkey that is closely aligned with the European Union Emissions Trading System (EU ETS). With the harmonised ETS to be put into operation, it is planned to harmonise Turkey's climate policies with the EU as part of Turkey's efforts to achieve its climate targets and facilitate the transition to a low-carbon economy. In 2026, the initial carbon price is set at \$10/ton CO₂e. This value is set in line with the initial levels in the EU ETS, in line with the harmonisation process envisaged when Turkey's ETS system first became operational. An annual increase of 10 per cent is foreseen until 2030. After 2030, a fully harmonised system with the EU is envisaged. Free allowances, which will be terminated in 2034 in the EU ETS, will follow a similar process in Turkey and will be terminated after the peak year (2038).

(5.10.1.12) Business decision-making processes the internal price is applied to

Select all that apply

- Operations
- ✓ Risk management
- ✓ Impact management
- Capital expenditure
- Opportunity management

✓ Public policy engagement

(5.10.1.13) Internal price is mandatory within business decision-making processes

Select from:

✓ Yes, for all decision-making processes

(5.10.1.15) Pricing approach is monitored and evaluated to achieve objectives

Select from:

✓ Yes

(5.10.1.16) Details of how the pricing approach is monitored and evaluated to achieve your objectives

Akenerji's internal carbon pricing is used as a strategy to both manage the carbon costs of existing fossil-fuelled generation facilities and to reduce its carbon footprint by investing in renewable energy. In line with the 50% emission reduction targetby 2030, internal carbon pricing shapes our company's capital investments, operational costs and long-term sustainability strategy. Investments in renewable energy projects and energy storage systems are evaluated by taking into account the internal carbon price and the effects of carbon costs on the profitability of the projects are calculated. In line with the carbon pricing for Erzin NGCCPP, it is foreseen that it will create an increasing cost pressure every year and the plant will be gradually closed and replaced by renewable energy sources. The gradual increase in carbon prices accelerates the transition to low-carbon technologies in line with Akenerji's 2050 net zero target.

[Add row]

(5.11) Do you engage with your value chain on environmental issues?

Suppliers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

Yes

(5.11.2) Environmental issues covered

Select all that apply

✓ Climate change

✓ Water

Customers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

✓ No, but we plan to within the next two years

(5.11.3) Primary reason for not engaging with this stakeholder on environmental issues

Select from:

✓ Lack of internal resources, capabilities, or expertise (e.g., due to organization size)

(5.11.4) Explain why you do not engage with this stakeholder on environmental issues

Within the scope of prioritisation studies, efforts to involve the relevant stakeholder group in the process are planned to be completed next year.

Investors and shareholders

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

Yes

(5.11.2) Environmental issues covered

Select all that apply

✓ Climate change

Water

Other value chain stakeholders

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

✓ No, but we plan to within the next two years

(5.11.3) Primary reason for not engaging with this stakeholder on environmental issues

Select from:

✓ Lack of internal resources, capabilities, or expertise (e.g., due to organization size)

(5.11.4) Explain why you do not engage with this stakeholder on environmental issues

Within the scope of prioritisation studies, efforts to involve the relevant stakeholder group in the process are planned to be completed next year. [Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

	Assessment of supplier dependencies and/or impacts on the environment
Climate change	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years
Water	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years

[Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ Business risk mitigation
- ☑ Regulatory compliance
- ✓ Strategic status of suppliers
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

In order to evaluate compliance with the ESG criteria adopted by our business partners and suppliers while seeking to achieve our 2024 Sustainability goals, we applied the ESG assessment questionnaire prepared by Synesgy in cooperation with CRIF to our top ten suppliers of critical or strategic importance, and received 90% feedback. 10% of our suppliers who responded the survey, received an Environmental, Social and Corporate Governance (ESG) Score of "A-Excellent Level", while 50% scored "C-Intermediate Level", 20% scored "B-Good Level", and 20% scored "D-Satisfactory Level". We did not assess our suppliers' dependencies and/or impacts on climate change and water during the 2024 operating period, but we plan to do so within the next two years. In this context, we aim to take into account the following criteria when choosing which suppliers we will prioritize: • Reducing business risk • Regulatory compliance • Strategic situation of suppliers • Improving supplier performance Compliance with the ISO 14001 Environmental Management System is one of the environmental requirements that suppliers must meet as part of Akenerji's procurement process. This is followed by compliance with the legislation and the Akenerji Sustainability Policy. These environmental requirements are incorporated into our supplier agreements. We also have a policy in place to tackle non-compliance.

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ Business risk mitigation
- ✓ Regulatory compliance
- ✓ Strategic status of suppliers
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

We continued to raise awareness of the environmental, social, and governance factors with our suppliers to help them strengthen their business practices and integrate sustainability into their business processes. Within the scope of prioritisation studies, efforts to involve the relevant stakeholder group in the process are planned to be completed next year.

[Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Akenerji has a total of 793 suppliers. Our local supplier ratio increased from 39% in the previous year to 51% this year. Environmental and social criteria are taken into consideration in our contracts with our suppliers and among our supplier selection criteria. This issue is also among the material issues of our company. In the supplier selection process, we take into account the existence of Management Systems such as ISO 9001 Quality, ISO 14001 Environment, ISO 45001 OHS, ISO 50001 Energy, Product Responsibility, Diversity and Inclusion, Human Rights criteria. We demand corrective actions from our active suppliers that we determine do not comply with basic environmental criteria. We terminate cooperation with suppliers that we determine to have any negative environmental impact. Supplier Evaluation We evaluated our active suppliers in accordance with the Supplier Performance Evaluation according to the evaluation parameters of 'Quality Score', 'Termine Compliance Score' and 'Receiving Score'. According to the evaluation results, we do not have any suppliers with 'Low Performance' status, and we provided the necessary feedback to our suppliers in the 'Suppliers Requiring Improvement' group.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

☑ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

In the supplier selection process, we take into account the existence of Management Systems such as ISO 9001 Quality, ISO 14001 Environment, ISO 45001 OHS, ISO 50001 Energy, Product Responsibility, Diversity and Inclusion, Human Rights criteria. We demand corrective actions from our active suppliers that we determine do not comply with basic environmental criteria. We terminate cooperation with suppliers that we determine to have any negative environmental impact. We expect our suppliers to comply with the rules written in the general conditions of procurement, contracts, specifications and other similar documents regulating our business relations with our suppliers, as well as the regulations on business ethics, human rights (no child labour, forced labour, discrimination, inequality, human rights violations, etc.), occupational health and safety. In order to help our suppliers strengthen their business practices and integrate sustainability into their business processes, we continued to raise awareness on environmental, social and governance factors and awareness and compliance with Akenerji policies to control water management process. In order to identify and monitor these impacts of our suppliers, we implemented the 'Sustainability Supplier Evaluation Survey' in the 2024 operating period.

[Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Compliance with an environmental certification, please specify: 14001

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Certification
- ☑ Supplier scorecard or rating
- ✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

☑ 76-99%
(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement
Select from: ✓ 1-25%
(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement
Select from: ✓ None
(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement
Select from: ✓ Less than 1%
(5.11.6.9) Response to supplier non-compliance with this environmental requirement
Select from: ☑ Retain and engage
(5.11.6.10) % of non-compliant suppliers engaged

Select from:

Select from:

✓ Less than 1%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

☑ Assessing the efficacy and efforts of non-compliant supplier actions through consistent and quantified metrics

(5.11.6.12) Comment

With the systemic improvements we carried out in 2024, we continued to work on automated structures that will accelerate procurement and enable employees to focus on more value-added work, and we commissioned the e-tender procurement portal in this vein. Akenerji requires all suppliers to comply with national environmental and climate-related regulations and encourages them to adopt internationally recognised standards such as ISO 14001. Within the purchasing process, specific attention is given to climate-related criteria, including measures to reduce greenhouse gas emissions, improve energy and water efficiency, and ensure responsible waste and material management. Compliance is monitored through contractual obligations, supplier self-assessments, and documentation reviews, supported by the requirement for valid permits and certifications. Periodic performance evaluations and audits are carried out to confirm alignment, while suppliers are encouraged to disclose data on carbon emissions and water use to strengthen transparency across the value chain. This is followed by compliance with the legislation and the Akenerji Sustainability Policy. These environmental requirements are incorporated into our supplier agreements.

Water

(5.11.6.1) Environmental requirement

Select from:

☑ Other, please specify: Compliance the regulations and Akenerji Sustainability Policy

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ☑ Supplier scorecard or rating
- ✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 1-25%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

☑ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ Less than 1%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

✓ Assessing the efficacy and efforts of non-compliant supplier actions through consistent and quantified metrics

(5.11.6.12) Comment

In the 2024 supplier selection process, we evaluated the existence of management systems such as ISO 9001 Quality, ISO 14001 Environment, ISO 45001 OHS, and ISO 50001 Energy, as well as criteria on product responsibility, diversity and inclusion, and human rights. Under ISO 14001, particular attention was given to water management practices, including the efficient use of water, treatment of wastewater, and compliance with local regulations. Corrective actions are requested from suppliers identified as not meeting basic environmental requirements, while cooperation is terminated with suppliers found to have negative environmental impacts. Supplier performance was assessed through the Supplier Performance Evaluation based on Quality Score, Deadline Compliance Score, and Receiver Score. We also expect suppliers to comply with the conditions outlined in procurement contracts, specifications, and related documents, together with requirements on business ethics, human rights (no child labour, forced labour, discrimination, or rights violations), OHS, and working conditions. To strengthen awareness of environmental, social, and governance issues, we continued supplier engagement programs and encouraged the integration of sustainability into business processes. To identify and monitor environmental and social impacts, including water-related practices, we implemented the Sustainability Supplier Evaluation Survey during the 2024 operating period.

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

[Add row]

☑ Adoption of the United Nation's International Labour Organization principles

(5.11.7.3) Type and details of engagement

Capacity building

- ✓ Develop or distribute resources on how to map upstream value chain
- ✓ Provide training, support and best practices on how to mitigate environmental impact

Innovation and collaboration

Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 76-99%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

✓ None

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

We expect our suppliers to comply with the rules written in the general conditions of procurement, contracts, specifications and other similar documents regulating our business relations with our suppliers, as well as the regulations on business ethics, human rights (no child labour, forced labour, discrimination, inequality, human rights violations, etc.), occupational health and safety and working conditions. We continued to raise awareness of environmental, social and governance factors with our suppliers to help them strengthen their business practices and integrate sustainability into their business processes. In order to identify and monitor these impacts of our suppliers, we implemented the 'Sustainability Supplier Evaluation Survey' in the 2024 operating period.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

✓ No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Adoption of the United Nation's International Labour Organization principles

(5.11.7.3) Type and details of engagement

Capacity building

✓ Provide training, support and best practices on how to mitigate environmental impact

Information collection

✓ Collect water quantity information at least annually from suppliers (e.g., withdrawal and discharge volumes)

Innovation and collaboration

✓ Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

In the supplier selection process, we take into account the existence of Management Systems such as ISO 9001 Quality, ISO 14001 Environment, ISO 45001 OHS, ISO 50001 Energy, Product Responsibility, Diversity and Inclusion, Human Rights criteria. We demand corrective actions from our active suppliers that we determine do not comply with basic environmental criteria. We terminate cooperation with suppliers that we determine to have any negative environmental impact. Supplier Evaluation We have evaluated our active suppliers in accordance with the Supplier Performance Evaluation according to the evaluation parameters of 'Quality Score', 'Deadline Compliance Score' and 'Receiver Score'. We expect our suppliers to comply with the rules written in the general conditions of procurement, contracts, specifications and other similar documents regulating our business relations with our suppliers, as well as the regulations on business ethics, human rights (no child labour, forced labour, discrimination, inequality, human rights violations, etc.), occupational health and safety and working conditions.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

[Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

✓ Investors and shareholders

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Educate and work with stakeholders on understanding and measuring exposure to environmental risks
- ☑ Share information on environmental initiatives, progress and achievements

(5.11.9.3) % of stakeholder type engaged

Select from:

100%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

✓ None

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Our key stakeholders are the people and organisations that are affected by our activities, that may have an impact on achieving our company's business goals, and with whom we cooperate. In 2022, we analysed our stakeholders through a survey conducted with the participation of 62% of Akenerji executives prior to the preparation of our integrated report and identified our key stakeholders in two groups. We aim to review our material stakeholders every two years starting from 2022 and to improve our communication platforms accordingly. Our company uses a transparent and continuous communication network with stakeholder groups such as shareholders, employees, customers, suppliers, local communities and regulatory bodies. Our communication strategies include reporting, regular meetings, surveys and feedback mechanisms. These processes ensure an open dialogue with stakeholders and a common understanding of sustainability and performance targets...

(5.11.9.6) Effect of engagement and measures of success

Thanks to the regular and open communication network established with stakeholder groups, Akenerji successfully manages both its sustainability performance and strategic targets. Interactions with stakeholders, including shareholders, employees, customers, suppliers, local communities and regulatory bodies, enable the Company to better navigate climate-related risks and opportunities. In this context, opinions and suggestions on climate change risks and opportunities are received from stakeholders through regular feedback processes, meetings and surveys, and these feedbacks are integrated into Akenerji's strategic plans. Stakeholders' expectations regarding climate risks and opportunities are presented directly to the Board of Directors and these opinions contribute to the shaping of management decisions.

Water

(5.11.9.1) Type of stakeholder

Select from:

✓ Investors and shareholders

(5.11.9.2) Type and details of engagement

Education/Information sharing

☑ Educate and work with stakeholders on understanding and measuring exposure to environmental risks

(5.11.9.3) % of stakeholder type engaged

Select from:

☑ 100%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Our key stakeholders are the people and organisations that are affected by our activities, that may have an impact on achieving our company's business goals, and with whom we cooperate. In 2022, we analysed our stakeholders through a survey conducted with the participation of 62% of Akenerji executives prior to the preparation of our integrated report and identified our key stakeholders in two groups. We aim to review our material stakeholders every two years starting from 2022 and to improve our communication platforms accordingly. Our company uses a transparent and continuous communication network with stakeholder groups such as shareholders, employees, customers, suppliers, local communities and regulatory bodies. Our communication strategies include reporting, regular meetings, surveys and feedback mechanisms. These processes ensure an open dialogue with stakeholders and a common understanding of sustainability and performance targets..

(5.11.9.6) Effect of engagement and measures of success

Thanks to the regular and open communication network established with stakeholder groups, Akenerji successfully manages both its sustainability performance and strategic targets. Interactions with stakeholders, including shareholders, employees, customers, suppliers, local communities and regulatory bodies, enable the Company to better navigate climate-related risks and opportunities. In this context, opinions and suggestions on climate change risks and opportunities are received from stakeholders through regular feedback processes, meetings and surveys, and these feedbacks are integrated into Akenerji's strategic plans. Stakeholders' expectations regarding climate risks and opportunities are presented directly to the Board of Directors and these opinions contribute to the shaping of management decisions.

[Add row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

Climate change

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

We apply the operational control approach in line with the GHG Protocol. Our organizational boundary includes all facilities where Akenerji has the authority to introduce and implement operating policies. For Scope 1, 2 and 3 emissions, the same principle is applied: data are consolidated for all operations under our operational control, ensuring consistent coverage of direct activities and value chain impacts.

Water

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

We use the operational control approach to calculate environmental performance data on water management. This means all facilities where Akenerji has the authority to implement operating policies are included within our reporting boundary. The focus is on monitoring and managing water use and efficiency in our power plants under direct operational control. In addition, we conduct corporate water footprint calculations in line with ISO 14046, which improves water management practices consistently across our portfolio.

Plastics

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

We apply the operational control approach to the management of plastics, ensuring that all facilities and the head office where we have direct control are included in the boundary. Plastic waste reduction is a strategic priority, with annual monitoring of plastic purchases and recycling data forming the basis of performance tracking. In line with our target of eliminating single-use plastics such as cups, straws, and bottles by 2030, we are implementing gradual reduction steps up to 2025. These efforts are aligned with Akkök Holding's Business Plastics Initiative and integrated into Akenerji's broader sustainability strategy.

Biodiversity

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

We apply the operational control approach to assess and manage biodiversity impacts across our facilities. All power plants under direct control are regularly monitored, with facility-based assessments supported by risk temperature maps that guide action planning and resource allocation. Biodiversity protection is a core element of our environmental strategy, and plants with very high risk profiles are prioritised for targeted monitoring and protection measures.

[Fixed row]

C7. Environmental performance - Climate Change		
(7.1) Is this your first year of reporting emissions data to 0	DP?	
Select from: ✓ No		
(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?		
	Has there been a structural change?	
	Select all that apply ✓ No	
[Fixed row]	₩ NO	
(7.1.2) Has your emissions accounting methodology, boun year?	ndary, and/or reporting year definition changed in the reporting	
(7.1.2.1) Change(s) in methodology, boundary, and/or repo	orting year definition?	
Select all that apply ☑ Yes, a change in boundary		

(7.1.2.2) Details of methodology, boundary, and/or reporting year definition change(s)

✓ Yes, a change in reporting year definition

Our reporting boundary has been revised in the current reporting year. In previous years, Akenerji's GHG emissions inventory was calculated primarily on the basis of the Erzin Natural Gas Combined Cycle Power Plant, which accounted for approximately 99% of our total emissions. In 2024, the boundary was expanded to include all operations, covering seven hydroelectric power plants (HEPPs) and one wind power plant (WPP) in addition to Erzin NGCCPP. This revision ensures that our emissions reporting now reflects 100% of our operational portfolio and provides a more comprehensive and transparent account of our climate impact. In the previous CDP disclosure, the base year was reported as 2017. Following a reassessment conducted this year, the base years have been revised as follows: 2021 for Scope 1 emissions, 2019 for Scope 2 emissions, and 2021 for Scope 3 emissions.

[Fixed row]

(7.1.3) Have your organization's base year emissions and past years' emissions been recalculated as a result of any changes or errors reported in 7.1.1 and/or 7.1.2?

(7.1.3.1) Base year recalculation

Select from:

✓ No, because the impact does not meet our significance threshold

(7.1.3.3) Base year emissions recalculation policy, including significance threshold

As the scope of the current calculation is not aligned with the original base year the base year has been updated in the 2024 CDP disclosure (Scope 1 base year is 2021, Scope 2 base year is 2019, Scope 3 base year is 2021).

(7.1.3.4) Past years' recalculation

Select from:

✓ No

[Fixed row]

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

✓ Defra Environmental Reporting Guidelines: Including streamlined energy and carbon reporting guidance, 2019

- ✓ 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
- **☑** ISO 14064-1
- ☑ The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- ☑ Other, please specify: ICCT Policy update used for calculation of Scope 3: category 5 employee shuttle
- (7.3) Describe your organization's approach to reporting Scope 2 emissions.

(7.3.1) Scope 2, location-based

Select from:

☑ We are reporting a Scope 2, location-based figure

(7.3.2) Scope 2, market-based

Select from:

☑ We are reporting a Scope 2, market-based figure

(7.3.3) Comment

Akenerji calculates Scope 2 emissions using both the location-based and market-based methods according to GHG Protocol. The calculation encompasses the operations of a wind power plant, seven hydroelectric power plants, and a natural gas combined cycle power plant within our operational boundary. Location-based emissions are derived from Türkiye's national grid emission factor, which is also applied in the market-based calculation. For the reporting period, the results of the market-based and location-based approaches are identical because Akenerji did not procure any renewable energy certificates or enter into power purchase agreements that would allow for an adjusted market emission factor.

[Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

✓ No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

1560163.48

(7.5.3) Methodological details

Scope 1 emissions are calculated following the ISO 14064-1 standard. Primary data is obtained from on-site fuel consumption records, including natural gas, diesel, and other fuels used in Akenerji's power plants and company-owned vehicles. Fuel usage is tracked via metering systems and validated through internal audits. Emission factors applied are internationally recognized, primarily from the IPCC Guidelines and national inventories. For natural gas combustion, emission factors tailored to the fuel type and carbon content are used to estimate CO_2 , CH_4 , and N_2O emissions.

Scope 2 (location-based)

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

11131

(7.5.3) Methodological details

Scope 2 emissions are calculated in accordance with ISO 14064-1. These emissions represent indirect greenhouse gas emissions associated with the consumption of purchased electricity, heat, and steam, which occur outside Akenerji's operational boundary but are directly linked to its energy use. Akenerji applies the operational control approach to define its organizational boundary for Scope 2 reporting, ensuring all emissions related to electricity consumption within its operations are captured. Scope 2 emissions data is primarily derived from electricity consumption records across Akenerji's offices, facilities, and operational sites. Data sources include utility bills, on-site metering systems, and internal energy management systems to guarantee accurate and consistent reporting.

Scope 2 (market-based)

(7.5.1) Base year end

12/30/2017

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0.11

(7.5.3) Methodological details

Emissions related to purchased goods and services were calculated using relevant emission factors published in the Ecoinvent and DEFRA databases. Calculations were performed by multiplying the activity data with the corresponding emission factors. These emissions are reported under Scope 3 – Purchased Goods and Services (Category 1).

Scope 3 category 2: Capital goods

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Emissions related to capital goods cover only capital goods purchased within the reporting year. Calculations were performed using dollar-based emission factors published by the USEPA. The purchase amount of capital goods (in USD) was used as activity data and multiplied by the corresponding emission factor matched from the USEPA database to calculate the emission quantity. These calculations are reported under Scope 3 – Capital Goods (Category 2). There was no Scope 3 – Capital Goods (Category 2) in 2024.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

253640.61

(7.5.3) Methodological details

Emissions from the RMS (natural gas pressure regulation station supplying the Erzin NGCCPP), natural gas combustion for power generation, and fuel consumption (gasoline and diesel) in generators, fire pumps, and vehicles were quantified and reported as part of the organization's Scope 3 emissions.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

For the calculation of transportation-related emissions, activity data was developed by multiplying the distance traveled (km) by the weight of transported goods (tons) according to the vehicle type used. Emission factors specific to each vehicle type, sourced from the Ecoinvent database, were applied in the emission calculations. There is no Scope 3 category 4: Upstream transportation and distribution in 2024.

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

1.49

(7.5.3) Methodological details

Activity data for waste types was compiled in tons, and emission calculations were performed using emission factors published by DEFRA

Scope 3 category 6: Business travel

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Activity data for transportation was based on the distance traveled (km), while for accommodation, it was calculated by multiplying the number of nights by the number of rooms. Emission calculations used DEFRA emission factors specific to the types of vehicles used for business travel and country-specific emission factors for accommodation.

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

56.89

(7.5.3) Methodological details

Activity data for employee shuttle services was calculated based on the total round-trip distance of the route (km). Emission calculations were conducted using DEFRA emission factors corresponding to the specific vehicle types used.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

As of 2024, operations are based on ownership and operation of power generation facilities; therefore, there are no leased assets within upstream activities. Due to the absence of leased assets, this category is not applicable

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

300.48

(7.5.3) Methodological details

The calculations consider only emissions resulting from the transportation of waste to waste treatment facilities. Activity data was generated by multiplying the amount of waste transported (tons) by the distance to the waste facility (km). This activity data was then multiplied by emission factors from the Ecoinvent database, specific to the vehicle types used for transportation, to calculate transportation-related emissions. There was no Scope 3 category 9: Downstream transportation and distribution in 2024.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

1527813.21

(7.5.3) Methodological details

In 2024, a total of 3,190,257,575 kWh of electricity was delivered to Türkiye Elektrik İletim A.Ş. (TEİAŞ). Emissions were calculated by multiplying activity data (electricity consumption) by the relevant emission factors. The calculation process was conducted in accordance with the principles of ISO 14064-1, which provides a general framework for greenhouse gas inventory and reporting. Furthermore, a detailed classification of Scope 3 emissions was performed in alignment with the GHG Protocol, ensuring compliance with the Protocol's methodology for Scope 3 subcategories.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations

Scope 3 category 14: Franchises

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations

Scope 3 category 15: Investments

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations

Scope 3: Other (upstream)

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations

Scope 3: Other (downstream)

(7.5.1) Base year end

12/30/2021

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

The company's core business is electricity generation, and the electricity produced is sold directly to the grid without any physical processing. Therefore, this category is not applicable to the company's operations
[Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

1184301

(7.6.3) Methodological details

The calculation was conducted in accordance with ISO 14064-1 and the GHG Protocol Corporate Standard. Fuel types considered include natural gas and diesel. Activity data were sourced from meter readings and purchase invoices. Emission factors applied were based on IPCC 2006 guidelines and DEFRA 2024 data. It was assumed that complete combustion of all fuels occurred.

Past year 1

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

1189348

(7.6.2) End date

12/30/2023

(7.6.3) Methodological details

The calculation was conducted in accordance with ISO 14064-1 and the GHG Protocol Corporate Standard. Fuel types considered include natural gas and diesel. Activity data were sourced from meter readings and purchase invoices. Emission factors applied were based on IPCC 2006 guidelines and DEFRA 2024 data. It was assumed that complete combustion of all fuels occurred.

Past year 2

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

1143603

(7.6.2) End date

12/30/2022

(7.6.3) Methodological details

The calculation was conducted in accordance with ISO 14064-1 and the GHG Protocol Corporate Standard. Fuel types considered include natural gas and diesel. Activity data were sourced from meter readings and purchase invoices. Emission factors applied were based on IPCC 2006 guidelines and DEFRA 2024 data. It was assumed that complete combustion of all fuels occurred.

Past year 3

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

1560163.48

(7.6.2) End date

12/30/2021

(7.6.3) Methodological details

The calculation was conducted in accordance with ISO 14064-1 and the GHG Protocol Corporate Standard. Fuel types considered include natural gas and diesel. Activity data were sourced from meter readings and purchase invoices. Emission factors applied were based on IPCC 2006 guidelines and DEFRA 2024 data. It was assumed that complete combustion of all fuels occurred.

[Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

10363

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

10363

(7.7.4) Methodological details

Scope 2 emissions were calculated following ISO 14064-1 and GHG Protocol standards, based on electricity purchased from the national grid. Electricity consumption data were collected from TEİAŞ meters linked to the facility's transformer and validated by cross-referencing with EPİAŞ reports. Consumption data were recorded hourly and aggregated daily and monthly. Emission factors applied were sourced from the International Energy Agency (IEA) 2021 dataset. This methodology ensures consistent, verifiable, and internationally recognized emissions reporting.

Past year 1

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

8931

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

8931

(7.7.3) End date

12/30/2023

(7.7.4) Methodological details

In 2023, Scope 2 emissions were calculated in accordance with ISO 14064-1 and the GHG Protocol standards, based on electricity consumption purchased from the national grid. Electricity usage data were obtained from TEİAŞ meters installed on the facility's transformer and validated through comparison with EPİAŞ reports. Hourly consumption data were compiled and reported on daily and monthly intervals. Emission factors sourced from the International Energy Agency (IEA) 2020 were applied as follows: $CO_2 - 0.4313$ kg/kWh, $N_2O - 0.002$ kg/kWh, and $CH_4 - 0.0001$ kg/kWh. The total electricity purchased from the grid in 2023 amounted to 20,296,896 kWh. This methodology ensures accurate, consistent, and verifiable emissions reporting aligned with internationally recognized standards.

Past year 2

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

7821

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

7821

(7.7.3) End date

12/30/2022

(7.7.4) Methodological details

In 2022, Scope 2 emissions were calculated using electricity consumption data from the national grid. Total electricity usage was recorded via metering systems at the transformer station and validated against monthly reports from the Energy Market Regulatory Authority ($EP\dot{l}A$ \$). Emission factors applied were derived from the International Energy Agency (IEA) 2020 dataset as follows: $CO_2 - 0.4313 \text{ kg}CO_2/\text{kW}h$, $N_2O - 0.002 \text{ kg/kW}h$, and $CH_4 - 0.0001 \text{ kg/kW}h$. Verified electricity consumption for 2022 totaled 19,858,873 kWh. This approach ensures accurate and transparent emissions reporting based on robust consumption data and internationally accepted methodologies.

Past year 3

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

4541.32

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

4541.32

(7.7.3) End date

12/30/2021

(7.7.4) Methodological details

In 2021, Scope 2 emissions were calculated using electricity consumption data from the national grid. Total electricity usage was recorded via metering systems at the transformer station and validated against monthly reports from the Energy Market Regulatory Authority ($EP\dot{l}A$). Emission factors applied were derived from the International Energy Agency (IEA) 2020 dataset as follows: $CO_2 - 0.4313 \text{ kg}CO_2/kWh$, $N_2O - 0.002 \text{ kg/kWh}$, and $CH_4 - 0.0001 \text{ kg/kWh}$. Verified electricity consumption for 2022 totaled 10,485,610 kWh. This approach ensures accurate and transparent emissions reporting based on robust consumption data and internationally accepted methodologies. [Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

31

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Emissions related to purchased goods and services were calculated using relevant emission factors published in the Ecoinvent and DEFRA databases. Calculations were carried out by multiplying activity data with the corresponding emission factors and were reported under Scope 3 – Category 1: Purchased Goods and Services.

Capital goods

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

14

(7.8.3) Emissions calculation methodology

Select all that apply

- Average data method
- ✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Emission calculations related to capital goods cover only those capital goods purchased during the reporting year. The calculations were performed using dollar-based emission factors published by the U.S. Environmental Protection Agency (USEPA). The purchase value of each capital good (in USD) was used as activity data and multiplied by the corresponding emission factor matched from the USEPA database to determine the emission amount. These calculations were reported under Scope 3 – Category 2: Capital Goods.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

188994

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Spend-based method
- ✓ Fuel-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

All fuels consumed in 2024 were converted into kilograms or tons and included in the calculations. The resulting emissions were calculated using emission factors published by DEFRA. Transmission and distribution losses, as well as Well-to-Tank (WTT) emissions related to electricity consumption, were determined based on emission factors published by the International Energy Agency (IEA). These calculations were reported under Scope 3 – Category 3: Fuel- and Energy-Related Activities (not included in Scope 1 or Scope 2).

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

8

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Average data method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

For the calculation of transport-related emissions, activity data were generated by multiplying the distance traveled (in kilometers) by the weight of the transported goods (in tons), based on the type of vehicle used. Emission factors specific to each vehicle type were sourced from the Ecoinvent database and applied accordingly in the emission calculations.

Waste generated in operations

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

3

(7.8.3) Emissions calculation methodology

Select all that apply

- ☑ Supplier-specific method
- ✓ Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Activity data related to waste types (in tons) were compiled, and emission calculations were performed using emission factors published by DEFRA.

Business travel

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

138

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

n

(7.8.5) Please explain

Activity data for transportation were based on the distance traveled (in kilometers), while for accommodation, they were calculated by multiplying the number of nights by the number of rooms. Emission calculations took into account DEFRA-published emission factors corresponding to the types of vehicles used for business travel, as well as country-specific emission factors for accommodation.

Employee commuting

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

300

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Average data method
- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

(7.8.5) Please explain

Activity data for employee commuting services were based on the total round-trip distance of each route (in kilometers). Emission calculations were carried out using emission factors published by DEFRA, corresponding to the type of vehicle used.

Upstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As of 2024, operations are based on the ownership and operation of electricity generation facilities; therefore, there are no upstream leased assets involved in the activities. As there are no leased assets applicable to upstream operations, this category is not relevant to the company's activities.

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

2

(7.8.3) Emissions calculation methodology

Select all that apply

- Average data method
- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

The calculations considered only the emissions resulting from the transportation of waste to disposal facilities. In this context, activity data were generated by multiplying the amount of waste transported (in tons) by the distance to the disposal facility (in kilometers). The resulting activity data were then multiplied by emission factors sourced from the Ecoinvent database, based on the type of vehicle used, to calculate transportation-related emissions.

Processing of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

The company's core business activity is electricity generation, and the electricity produced is sold directly to the grid without undergoing any physical processing. Therefore, this category is not applicable to the company's operations.

Use of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

1193157

(7.8.3) Emissions calculation methodology

Select all that apply

Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

In 2024, a total of 3,190,257,575 kWh of electricity was delivered to the Turkish Electricity Transmission Corporation (TEİAŞ). GHG emissions associated with this activity were calculated by applying relevant emission factors to the reported activity data. The calculation methodology adhered to the principles and guidance of ISO 14064-1, ensuring a standardized approach to emissions quantification and reporting. Additionally, Scope 3 emissions were identified and categorized in accordance with the GHG Protocol, with the applied methodology ensuring alignment and consistency with the defined Scope 3 categories and boundaries under the standard.

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As the product generated is electricity, it is consumed upon use and does not result in any physical waste requiring disposal or end-of-life treatment. Consequently, this Scope 3 category has been assessed as not relevant to our operations.

Downstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As of 2024, there are no downstream leased assets (e.g., facilities or infrastructure for electricity distribution). The electricity produced is sold directly to the national grid. Therefore, this category is not relevant to the company's operations.

Franchises

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As of 2024, the company has not operated under a franchise model. All operations have been conducted directly by the company. Therefore, this category is not applicable.

Investments

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

No significant financial investments relevant for reporting were made during 2024. Since the company's focus is on operational emissions, this category is not applicable within Scope 3 emissions.

Other (upstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As of 2024, there are no other significant upstream activities contributing to Scope 3 emissions beyond the previously assessed categories. Therefore, this category is not applicable.

Other (downstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

As of 2024, there are no additional downstream activities beyond electricity sales. These activities have already been accounted for within other Scope 3 categories. Therefore, this category is not applicable.
[Fixed row]

(7.8.1) Disclose or restate your Scope 3 emissions data for previous years.

Past year 1

(7.8.1.1) End date

12/30/2023

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

0.11

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

0

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

186992.18

(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)

(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e) 2.54 (7.8.1.7) Scope 3: Business travel (metric tons CO2e) 11.07 (7.8.1.8) Scope 3: Employee commuting (metric tons CO2e) 48.1 (7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e) 0 (7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e) 242.83 (7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e) 0 (7.8.1.12) Scope 3: Use of sold products (metric tons CO2e) 1189347.54 (7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e) 0

(7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e)

(7.8.1.15) Scope 3: Franchises (metric tons CO2e)

0

(7.8.1.16) Scope 3: Investments (metric tons CO2e)

0

(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)

0

(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)

0

(7.8.1.19) Comment

GHG emissions for the reporting year have been calculated using the same methodology applied in the base year, with no revisions or modifications to the calculation approach. This ensures methodological consistency across reporting periods. The applied methodology is fully aligned with the principles and requirements set out in ISO 14064-1 and the GHG Protocol Corporate Standard. In the verification certificate, each category under Scope 3 is reported as a whole number, with decimal values rounded either up or down based on the data.

Past year 2

(7.8.1.1) End date

12/30/2022

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

0.1

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e) 189471.63 (7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e) 0 (7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e) 2.76 (7.8.1.7) Scope 3: Business travel (metric tons CO2e) 11.6 (7.8.1.8) Scope 3: Employee commuting (metric tons CO2e) 56.89 (7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e) 0 (7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e) 200.51 (7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e)

(7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e)

0

(7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e)

0

(7.8.1.15) Scope 3: Franchises (metric tons CO2e)

0

(7.8.1.16) Scope 3: Investments (metric tons CO2e)

0

(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)

0

(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)

0

(7.8.1.19) Comment

GHG emissions for the reporting year have been calculated using the same methodology applied in the base year, with no revisions or modifications to the calculation approach. This ensures methodological consistency across reporting periods. The applied methodology is fully aligned with the principles and requirements set out in ISO 14064-1 and the GHG Protocol Corporate Standard.

Past year 3

(7.8.1.1) End date

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)
0.11
(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)
o
(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)
253640.61
(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)
o
(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e)
1.79
(7.8.1.7) Scope 3: Business travel (metric tons CO2e)
o
(7.8.1.8) Scope 3: Employee commuting (metric tons CO2e)
56.89
(7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e)
o
(7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e)

(7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e)
0
(7.8.1.12) Scope 3: Use of sold products (metric tons CO2e)
1527813.21
(7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e)
o
(7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e)
o
(7.8.1.15) Scope 3: Franchises (metric tons CO2e)
o
(7.8.1.16) Scope 3: Investments (metric tons CO2e)
o
(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)
o
(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)
0
(7.8.1.19) Comment

GHG emissions for the reporting year have been calculated using the same methodology applied in the base year, with no revisions or modifications to the calculation approach. This ensures methodological consistency across reporting periods. The applied methodology is fully aligned with the principles and requirements set out in ISO 14064-1 and the GHG Protocol Corporate Standard.

[Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ☑ Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ☑ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.1.4) Attach the statement

Akenerji Elektrik Üretim A.Ş_14064_14046_Assement_Report_07072025.pdf

(7.9.1.5) Page/section reference

The verification results for Scope 1 emissions for the year 2024, along with the relevant references, can be found on pages 4, 5, 14, 15, and 16 of the verification documentation.

(7.9.1.6) Relevant standard

Select from:

☑ ISO14064-3

(7.9.1.7) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.2.5) Attach the statement

Akenerji Elektrik Üretim A.Ş_14064_14046_Assement_Report_07072025.pdf

(7.9.2.6) Page/ section reference

The verification results for Scope 2 emissions for the year 2024, along with the relevant references, can be found on pages 4, 5, 14, 15, and 16 of the verification documentation.

(7.9.2.7) Relevant standard

Select from:

☑ ISO14064-3

(7.9.2.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

✓ Scope 3: Franchises

✓ Scope 3: Investments

✓ Scope 3: Capital goods

✓ Scope 3: Business travel

✓ Scope 3: Employee commuting

✓ Scope 3: Waste generated in operations

☑ Scope 3: End-of-life treatment of sold products

☑ Scope 3: Upstream transportation and distribution

☑ Scope 3: Downstream transportation and distribution

☑ Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)

✓ Scope 3: Use of sold products

✓ Scope 3: Upstream leased assets

✓ Scope 3: Downstream leased assets

✓ Scope 3: Processing of sold products

✓ Scope 3: Purchased goods and services

(7.9.3.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.3.3) Status in the current reporting year

Select from:

Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.3.5) Attach the statement

Akenerji Elektrik Üretim A.Ş_14064_14046_Assement_Report_07072025.pdf

(7.9.3.6) Page/section reference

The verification results for Scope 3 emissions for the year 2024, along with the relevant references, can be found on pages 4, 5, 14, 15, and 16 of the verification documentation.

(7.9.3.7) Relevant standard

Select from:

☑ ISO14064-3

(7.9.3.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

Decreased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

0.005

(7.10.1.4) Please explain calculation

In 2024, renewable electricity consumption for internal operations decreased from 2,197.15 MWh in 2023 to 2,041.7 MWh. As a result, emissions associated with renewable electricity consumption also decreased, primarily due to the reduction in electricity demand for internal use.

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no other emissions reduction activities in the reporting year. Therefore, other emissions reduction activities has not been included in the calculation.

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no divestment in the reporting year. Therefore, divestment has not been included in the calculation.

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

n

(7.10.1.4) Please explain calculation

There is no acquisition in the reporting year. Therefore, acquisition has not been included in the calculation.

Mergers

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There are no mergers in the reporting year. Therefore, mergers have not been included in the calculation.

Change in output

(7.10.1.1) Change in emissions (metric tons CO2e)

3550.21

(7.10.1.2) Direction of change in emissions

Select from:

✓ Decreased

(7.10.1.3) Emissions value (percentage)

0.28

(7.10.1.4) Please explain calculation

In 2024, the production of electricity in Akenerji decreased from 4,202,448.9 MWh in 2023 to 3,968,772.6 MWh. Therefore, change in renewable energy consumption related emissions are decreased due to less electricity consumption for internal use.

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no changing in methodology in the reporting year. Therefore, changing in methodology has not been included in the calculation.

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no changing in boundary in the reporting year. Therefore, changing in boundary has not been included in the calculation.

Change in physical operating conditions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There are no changing in physical operating conditions in the reporting year. Therefore, changing in physical operating conditions have not been included in the calculation.

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no unidentified emission in the reporting year. Therefore, unidentified emission has not been included in the calculation.

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

There is no other emission in the reporting year. Therefore, other emission has not been included in the calculation. [Fixed row]

(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Select from:

✓ Location-based

(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
Select from: ✓ No
(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Select from: ✓ Yes
(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP).
Row 1
(7.15.1.1) Greenhouse gas
Select from: ☑ CO2
(7.15.1.2) Scope 1 emissions (metric tons of CO2e)
1182924.59
(7.15.1.3) GWP Reference
Select from: ☑ IPCC Sixth Assessment Report (AR6 - 100 year)
Row 2
(7.15.1.1) Greenhouse gas
Select from:

✓ CH4

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

598.51

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Sixth Assessment Report (AR6 - 100 year)

Row 3

(7.15.1.1) **Greenhouse gas**

Select from:

☑ N20

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

595.11

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Sixth Assessment Report (AR6 - 100 year)

Row 4

(7.15.1.1) **Greenhouse** gas

Select from:

✓ HFCs

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Sixth Assessment Report (AR6 - 100 year)

Row 5

(7.15.1.1) **Greenhouse gas**

Select from:

✓ SF6

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

167.62

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Sixth Assessment Report (AR6 - 100 year)
[Add row]

(7.15.3) Break down your total gross global Scope 1 emissions from electric utilities value chain activities by greenhouse gas type.

Fugitives

(7.15.3.1) Gross Scope 1 CO2 emissions (metric tons CO2)

0

(7.15.3.2) Gross Scope 1 methane emissions (metric tons CH4)

(7.15.3.3) Gross Scope 1 SF6 emissions (metric tons SF6)

0

(7.15.3.4) Total gross Scope 1 emissions (metric tons CO2e)

0

(7.15.3.5) Comment

There is no fugitive emissions for the year 2024.

Combustion (Electric utilities)

(7.15.3.1) Gross Scope 1 CO2 emissions (metric tons CO2)

0

(7.15.3.2) Gross Scope 1 methane emissions (metric tons CH4)

0

(7.15.3.3) Gross Scope 1 SF6 emissions (metric tons SF6)

0

(7.15.3.4) Total gross Scope 1 emissions (metric tons CO2e)

0

(7.15.3.5) Comment

There is no combustion (electric utilities) in the reporting year. Therefore, Combustion (Electric utilities) has not been included in the calculation.

Combustion (Gas utilities)

(7.15.3.1) Gross Scope 1 CO2 emissions (metric tons CO2)

1182785.533

(7.15.3.2) Gross Scope 1 methane emissions (metric tons CH4)

591.666

(7.15.3.3) Gross Scope 1 SF6 emissions (metric tons SF6)

0

(7.15.3.4) Total gross Scope 1 emissions (metric tons CO2e)

1183956

(7.15.3.5) Comment

Combustion (gas utilities) emissions for the year 2024 have been calculated based on a breakdown of individual emission sources.

Combustion (Other)

(7.15.3.1) Gross Scope 1 CO2 emissions (metric tons CO2)

0

(7.15.3.2) Gross Scope 1 methane emissions (metric tons CH4)

0

(7.15.3.3) Gross Scope 1 SF6 emissions (metric tons SF6)

0

(7.15.3.4) Total gross Scope 1 emissions (metric tons CO2e)

0

(7.15.3.5) Comment

There is no combustion (other) in the reporting year. Therefore, Combustion (other) has not been included in the calculation.

Emissions not elsewhere classified

(7.15.3.1) Gross Scope 1 CO2 emissions (metric tons CO2)

0

(7.15.3.2) Gross Scope 1 methane emissions (metric tons CH4)

0

(7.15.3.3) Gross Scope 1 SF6 emissions (metric tons SF6)

0

(7.15.3.4) Total gross Scope 1 emissions (metric tons CO2e)

0

(7.15.3.5) Comment

There is no emissions not elsewhere classified in the reporting year. Therefore, emissions not elsewhere classified has not been included in the calculation. [Fixed row]

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

	Scope 1 emissions (metric tons CO2e)
Turkey	1184301

[Fixed row]

(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

Select all that apply

☑ By activity

(7.17.3) Break down your total gross global Scope 1 emissions by business activity.

	Activity	Scope 1 emissions (metric tons CO2e)
Row 1	Combustion at Power Plants (Stationary)	1183956
Row 2	Fuel Combustion in Emergency Equipment	60.21
Row 3	Vehicle-based combustion (Mobile)	97.14
Row 4	Fugitive gases	187.65

[Add row]

(7.19) Break down your organization's total gross global Scope 1 emissions by sector production activity in metric tons CO2e.

	Gross Scope 1 emissions, metric tons CO2e	Comment		
Electric utility activities	1183956	Organization's total gross global Scope 1 emissions by sector production activity have been calculated.		

[Fixed row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

	Scope 1 emissions (metric tons CO2e)	Scope 2, location-based emissions (metric tons CO2e)	Please explain
Consolidated accounting group	1184301	10363	The calculation was performed in accordance with ISO 14064-1 and the GHG Protocol Corporate Standard.
All other entities	0	0	There are no other entities included in the organizational boundary. Therefore, no additional emissions are generated.

[Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

✓ No

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

✓ More than 90% but less than or equal to 95%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes
Consumption of purchased or acquired electricity	Select from: ✓ Yes
Consumption of purchased or acquired heat	Select from: ☑ No
Consumption of purchased or acquired steam	Select from: ☑ No
Consumption of purchased or acquired cooling	Select from: ☑ No
Generation of electricity, heat, steam, or cooling	Select from: ✓ Yes

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

☑ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

6369517.29

(7.30.1.4) Total (renewable + non-renewable) MWh

6369517.29

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

☑ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

23519.87

(7.30.1.4) Total (renewable + non-renewable) MWh

23519.87

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

974.06

(7.30.1.4) Total (renewable + non-renewable) MWh

974.06

Total energy consumption

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

974.06

(7.30.1.3) MWh from non-renewable sources

6393037.16

(7.30.1.4) Total (renewable + non-renewable) MWh

6394011.22

[Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ✓ Yes
Consumption of fuel for the generation of heat	Select from: ☑ No
Consumption of fuel for the generation of steam	Select from: ☑ No
Consumption of fuel for the generation of cooling	Select from: ☑ No
Consumption of fuel for co-generation or tri-generation	Select from: ☑ No

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Akenerji does not utilize biomass in its electricity generation activities. Therefore, there is no associated generation output attributable to biomass use.

Other biomass

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Akenerji does not utilize biomass in its electricity generation activities. Therefore, there is no associated generation output attributable to biomass use.

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from: ✓ LHV
(7.30.7.2) Total fuel MWh consumed by the organization
0
(7.30.7.3) MWh fuel consumed for self-generation of electricity
0
(7.30.7.4) MWh fuel consumed for self-generation of heat
0
(7.30.7.8) Comment
The amount of other renewable fuels (e.g. renewable hydrogen) consumed by Akenerji, excluding feedstock use, has been calculated in terms of megawatt-hours (MWh) based on fuel type.
Coal
(7.30.7.1) Heating value
Select from: ☑ LHV
(7.30.7.2) Total fuel MWh consumed by the organization
0
(7.30.7.3) MWh fuel consumed for self-generation of electricity
0

(7.30.7.4) MWh fuel consumed for self-generation of heat

(7.30.7.8) Comment

Akenerji does not utilize coal in its electricity generation activities. Therefore, there is no associated generation output attributable to coal use.

Oil

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

369.62

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

The amount of oil consumed by Akenerji has been calculated in terms of megawatt-hours (MWh) based on fuel type.

Gas

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

6369147.67

(7.30.7.3) MWh fuel consumed for self-generation of electricity

6369147.67

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

The amount of gas consumed by Akenerji has been calculated in terms of megawatt-hours (MWh) based on fuel type. Gas consumption data related to electricity generation has been calculated and reported. The detailed consumption figures can be found in Section 7.30.1.

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Akenerji does not utilize other non-renewable fuels in its electricity generation activities. Therefore, there is no associated generation output attributable to other non-renewable fuels use.

Total fuel

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

6369517.29

(7.30.7.3) MWh fuel consumed for self-generation of electricity

6369147.67

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

The amount of total fuels (e.g. renewable hydrogen) consumed by Akenerji, excluding feedstock use, has been calculated in terms of megawatt-hours (MWh) based on fuel type.

[Fixed row]

(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.

Turkey

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh)

71063.78

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

94583.65 [Fixed row]

(7.33) Does your electric utility organization have a transmission and distribution business?

Select from:

✓ No

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.301

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

(7.45.3) Metric denominator

Select from:

✓ megawatt hour generated (MWh)

(7.45.4) Metric denominator: Unit total

3968772.7

(7.45.5) Scope 2 figure used

Select from:

✓ Location-based

(7.45.6) % change from previous year

1.63

(7.45.7) Direction of change

Select from:

Increased

(7.45.8) Reasons for change

Select all that apply

✓ Change in output

(7.45.9) Please explain

In 2023, Akenerji's total Scope 1 and 2 GHG emissions amounted to 1,197,083.62 tCO₂e, while in 2024 they were 1,194,664 tCO₂e. Gross energy generation increased slightly from 3,904,596 MWh in 2023 to 3,968,772.7 MWh in 2024. Based on these figures, our emission intensity per unit of electricity generated was: 2023: 0.306 tCO₂e/MWh 2024: 0.301 tCO₂e/MWh While CDP requests intensity disclosure per unit of revenue, we are unable to disclose revenue-based metrics for

confidentiality reasons. Instead, we report emission intensity per MWh, which is the most relevant indicator for our business model and sector. This metric allows for effective tracking of our performance over time and provides investors with a normalized view of our carbon efficiency.

[Add row]

(7.46) For your electric utility activities, provide a breakdown of your Scope 1 emissions and emissions intensity relating to your total power plant capacity and generation during the reporting year by source.

Gas

(7.46.1) Absolute scope 1 emissions (metric tons CO2e)

1184064

(7.46.2) Emissions intensity based on gross or net electricity generation

Select from:

✓ Gross

(7.46.3) Scope 1 emissions intensity (Gross generation)

363.17

(7.46.4) Scope 1 emissions intensity (Net generation)

371.15

Hydropower

(7.46.1) Absolute scope 1 emissions (metric tons CO2e)

226.86

(7.46.2) Emissions intensity based on gross or net electricity generation

Select from: ☑ Gross
(7.46.3) Scope 1 emissions intensity (Gross generation)
0.36
(7.46.4) Scope 1 emissions intensity (Net generation)
0.37
Wind
(7.46.1) Absolute scope 1 emissions (metric tons CO2e)
10.79
(7.46.2) Emissions intensity based on gross or net electricity generation
Select from: ☑ Gross
(7.46.3) Scope 1 emissions intensity (Gross generation)
0.13
(7.46.4) Scope 1 emissions intensity (Net generation)
0.13
Total
(7.46.1) Absolute scope 1 emissions (metric tons CO2e)
1184301

(7.46.2) Emissions intensity based on gross or net electricity generation

Select from:

✓ Gross

(7.46.3) Scope 1 emissions intensity (Gross generation)

298.41

[Fixed row]

(7.52) Provide any additional climate-related metrics relevant to your business.

Row 1

(7.52.1) Description

Select from:

☑ Energy usage

(7.52.2) Metric value

23.83

(7.52.3) Metric numerator

94,583.65 MWh

(7.52.4) Metric denominator (intensity metric only)

3,968.77 GWh

(7.52.5) % change from previous year

9.37

(7.52.6) Direction of change

Select from:

Increased

(7.52.7) Please explain

In 2024, the total electricity consumption was calculated as 94583.65 MWh, while the total electricity generation reached 3,968.77 GWh. The total energy consumption consists of electricity sourced from the grid, electricity generated from renewable energy sources, and electricity generated at the Erzin Plant, which uses non-renewable energy sources. By taking the ratio of consumption to generation, an electricity intensity value of 23.83 was calculated for the year. In comparison, for 2023, total electricity consumption was 91570.61 MWh and total electricity generation was 4,202,45 GWh, resulting in an intensity value of 21.79. When comparing both years, an increase in electricity intensity was observed in 2024 relative to 2023. This increase corresponds to a change of approximately 9.37%. The reason for the increase is the decrease in electricity generation in 2024. Since a certain portion of electricity consumption is required to meet fixed operational needs, it remains relatively stable and is not directly proportional to the level of production.

Row 2

(7.52.1) Description

Select from:

Waste

(7.52.2) Metric value

0.02

(7.52.3) Metric numerator

62,1 tonnes

(7.52.4) Metric denominator (intensity metric only)

3,968.77 GWh

(7.52.5) % change from previous year

(7.52.6) Direction of change

Select from:

Decreased

(7.52.7) Please explain

In 2024, the total waste was calculated as 62.1 tonnes, while the total electricity generation reached 3,968.77 GWh. By taking the ratio of waste to generation, an intensity value of 0.0059 was calculated for the year. In comparison, for 2023, waste was 127,1 tonnes and total electricity generation was 4,202,448.9 MWh, resulting in an intensity value of 0.0048. When comparing both years, an increase in electricity intensity was observed in 2024 relative to 2023. This increase corresponds to a change of approximately 22.7%.

[Add row]

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

✓ Intensity target

(7.53.2) Provide details of your emissions intensity targets and progress made against those targets.

Row 1

(7.53.2.1) Target reference number

Select from:

✓ Int 1

(7.53.2.2) Is this a science-based target?

Select from:

✓ Yes, we consider this a science-based target, but we have not committed to seek validation of this target by the Science Based Targets initiative within the next two years

(7.53.2.4) Target ambition

Select from:

(7.53.2.5) Date target was set

12/30/2023

(7.53.2.6) Target coverage

Select from:

✓ Organization-wide

(7.53.2.7) Greenhouse gases covered by target

Select all that apply

✓ Carbon dioxide (CO2)

(7.53.2.8) Scopes

Select all that apply

✓ Scope 1

✓ Scope 2

(7.53.2.9) Scope 2 accounting method

Select from:

✓ Location-based

(7.53.2.11) Intensity metric

Select from:

✓ Metric tons CO2e per megawatt hour (MWh)

(7.53.2.12) End date of base year

12/30/2021

(7.53.2.13) Intensity figure in base year for Scope 1

0.286

(7.53.2.14) Intensity figure in base year for Scope 2

0.001

(7.53.2.33) Intensity figure in base year for all selected Scopes

0.2870000000

(7.53.2.34) % of total base year emissions in Scope 1 covered by this Scope 1 intensity figure

99.54

(7.53.2.35) % of total base year emissions in Scope 2 covered by this Scope 2 intensity figure

0.43

(7.53.2.54) % of total base year emissions in all selected Scopes covered by this intensity figure

99.97

(7.53.2.55) End date of target

12/30/2030

(7.53.2.56) Targeted reduction from base year (%)

50

(7.53.2.57) Intensity figure at end date of target for all selected Scopes 0.1435000000 (7.53.2.58) % change anticipated in absolute Scope 1+2 emissions 50 (7.53.2.60) Intensity figure in reporting year for Scope 1 0.2984 (7.53.2.61) Intensity figure in reporting year for Scope 2 0.0026 (7.53.2.80) Intensity figure in reporting year for all selected Scopes 0.3010000000 (7.53.2.81) Land-related emissions covered by target Select from: ✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT) (7.53.2.82) % of target achieved relative to base year -9.76 (7.53.2.83) Target status in reporting year Select from: New

(7.53.2.85) Explain target coverage and identify any exclusions

Scope 3 emissions have been excluded from the current target boundary, and a GHG emissions reduction target has been set to achieve a 50% reduction in Scope 1 and Scope 2 emissions by 2030, relative to the 2017 base year. This exclusion allows the company to prioritize emissions sources over which it has operational control, thereby ensuring focused and measurable progress toward its decarbonization objectives. The 50% reduction target is aligned with the company's broader climate strategy and supports national and global efforts to mitigate the impacts of climate change. The target is consistent with the Sectoral Decarbonisation Approach (SDA), a science-based method aligned with the goals of the Paris Agreement. In line with this approach, Akenerji has developed a roadmap to reduce its emissions intensity in electricity generation through a transition from fossil fuels—particularly natural gas—towards renewable energy sources. Akenerji's emission reduction strategy includes increasing the share of renewables in its generation portfolio, investing in energy efficiency initiatives, and integrating new technologies such as hybrid solar energy systems and energy storage solutions. These investments contribute to a lower emissions intensity across operations and align with both Turkey's nationally determined contributions under the Paris Agreement and the net-zero objectives of the power generation sector. While the Erzin Combined Cycle Gas Turbine (CCGT) power plant remains an operational asset, Akenerji aims to progressively lower the carbon intensity of its portfolio by increasing renewable generation capacity, in accordance with SDA benchmarks for the power sector.

(7.53.2.86) Target objective

Akenerji has set a target to reduce its Scope 1 and Scope 2 greenhouse gas emissions by 50% by 2030, relative to the 2017 base year. The primary source of Scope 1 emissions is the Erzin Natural Gas Combined Cycle Power Plant, which accounts for the vast majority of direct emissions. Scope 2 emissions are primarily associated with the purchase of electricity for operational needs. This target reflects Akenerji's commitment to aligning with international climate goals, including the objectives of the Paris Agreement, and supports the broader decarbonization of the energy sector. By focusing on its most material emission sources, Akenerji aims to drive impactful reductions through a combination of fuel switching, increased investment in renewable energy, and energy efficiency initiatives.

(7.53.2.87) Plan for achieving target, and progress made to the end of the reporting year

One of Akenerji's strategic priorities is to increase the share of renewable energy in its electricity generation portfolio. In 2024, renewable energy sources accounted for 19% of the company's total electricity generation. Ongoing capacity expansion activities at the Ayyıldız Wind Power Plant (WPP) are expected to support an increase in this share to 21% by 2025. From a carbon emissions perspective, Akenerji is committed to reducing its Scope 1 and Scope 2 emissions in line with its 2030 target. To support this objective, the company continues to implement measures under the ISO 50001 Energy Management System, with a focus on enhancing energy efficiency across operations. Additionally, the promotion of hybrid vehicle usage forms part of Akenerji's efforts to reduce electricity consumption and emissions from internal operations. These initiatives contribute to the company's broader decarbonization strategy and are aligned with national and international climate commitments, including the transition to a low-carbon energy system.

(7.53.2.88) Target derived using a sectoral decarbonization approach

Select from:

✓ Yes

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

Select	all	that	an	nlv
CCICCI	un	uiui	up	ρ_{IJ}

✓ Targets to increase or maintain low-carbon energy consumption or production

(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.

Row 1

(7.54.1.1) Target reference number

Select from:

✓ Low 1

(7.54.1.2) Date target was set

12/31/2022

(7.54.1.3) Target coverage

Select from:

Business activity

(7.54.1.4) Target type: energy carrier

Select from:

✓ Electricity

(7.54.1.5) Target type: activity

Select from:

Consumption

(7.54.1.6) Target type: energy source

Select from:

✓ Low-carbon energy source(s)

(7.54.1.7) End date of base year

12/31/2018

(7.54.1.8) Consumption or production of selected energy carrier in base year (MWh)

25810.34

(7.54.1.9) % share of low-carbon or renewable energy in base year

21

(7.54.1.10) End date of target

12/30/2024

(7.54.1.11) % share of low-carbon or renewable energy at end date of target

26

(7.54.1.12) % share of low-carbon or renewable energy in reporting year

9

(7.54.1.13) % of target achieved relative to base year

-240.00

(7.54.1.14) Target status in reporting year

Select from:

Underway

(7.54.1.16) Is this target part of an emissions target?

Yes, it is a part of our emissions target.

(7.54.1.17) Is this target part of an overarching initiative?

Select all that apply

✓ No, it's not part of an overarching initiative

(7.54.1.19) Explain target coverage and identify any exclusions

There are no exclusions in the target coverage.

(7.54.1.20) Target objective

Emissions from electricity consumption, which was 11,132 tonnes CO_2 in 2019 base year, decreased by 6.91% to 10,363 tonnes CO_2 in 2024. This reduction was realised as part of Akenerji's goal to reduce emissions from electricity consumption from the grid.

(7.54.1.21) Plan for achieving target, and progress made to the end of the reporting year

Akenerji has set an operational efficiency target to ensure that non-production electricity consumption at its power plant facilities does not exceed the 2022 baseline level of 339,934 kWh by the end of the reporting year. This target supports ongoing energy efficiency efforts and is aligned with the company's broader strategy to reduce indirect emissions and optimize internal energy use.

Row 2

(7.54.1.1) Target reference number

Select from:

✓ Low 2

(7.54.1.2) Date target was set

12/31/2022

(7.54.1.3) Target coverage

Select from:

✓ Business activity

(7.54.1.4) Target type: energy carrier

Select from:

☑ Electricity

(7.54.1.5) Target type: activity

Select from:

Production

(7.54.1.6) Target type: energy source

Select from:

☑ Renewable energy source(s) only

(7.54.1.7) End date of base year

12/31/2022

(7.54.1.8) Consumption or production of selected energy carrier in base year (MWh)

22522.61

(7.54.1.9) % share of low-carbon or renewable energy in base year

21

(7.54.1.10) End date of target

12/30/2024

(7.54.1.11) % share of low-carbon or renewable energy at end date of target

19

(7.54.1.12) % share of low-carbon or renewable energy in reporting year

18

(7.54.1.13) % of target achieved relative to base year

150.00

(7.54.1.14) Target status in reporting year

Select from:

Underway

(7.54.1.16) Is this target part of an emissions target?

Yes, it is a part of our emissions target.

(7.54.1.17) Is this target part of an overarching initiative?

Select all that apply

✓ No, it's not part of an overarching initiative

(7.54.1.19) Explain target coverage and identify any exclusions

There are no exclusions in the target coverage.

(7.54.1.20) Target objective

In line with the goal of increasing our renewable energy production, a 21% increase in production was targeted for 2024. As of 31.12.2024, this target has been achieved by 18%. The capacity increase of Ayyıldız Wind Power Plant is in progress. When this project is completed, our renewable energy generation capacity will further expand and contribute to our emission reduction targets.

(7.54.1.21) Plan for achieving target, and progress made to the end of the reporting year

The capacity expansion project at the Ayyıldız Wind Power Plant is currently underway. Upon completion, the project will increase Akenerji's total installed renewable energy capacity, thereby enhancing the share of renewables in the overall generation portfolio. This expansion directly supports the company's emission reduction targets by decreasing reliance on fossil fuel-based generation and lowering the carbon intensity of electricity production.

[Add row]

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e
Under investigation	2	`Numeric input
To be implemented	1	6964.2
Implementation commenced	0	0
Implemented	0	0
Not to be implemented	0	`Numeric input

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

Low-carbon energy consumptior	Low-carbon	enerav	consumption
-------------------------------	------------	--------	-------------

✓ Large hydropower (>25 MW)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

305875.99

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 1
- ✓ Scope 2 (location-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

1

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

1

(7.55.2.7) Payback period

Select from:

✓ No payback

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Kemah Hydroelectric Power Plant (HEPP), which has been included in Akenerji's investment plan, represents a clean and renewable energy source that does not generate direct carbon emissions during operation. As such, the project is expected to make a significant contribution to the company's emission reduction targets by replacing carbon-intensive electricity generation from fossil fuels. The avoided CO₂ emissions resulting from the operation of the hydroelectric power plant are estimated based on the expected annual electricity generation and the emission factor of the energy mix it displaces. The plant is projected to generate approximately 565.39 GWh of electricity annually, assuming an operational capacity factor between 30% and 40%, depending on hydrological conditions and other operational factors. Using the emission factor of 0.5410 tCO₂/MWh, as provided by the Turkish Ministry of Energy and Natural Resources for hydro projects, the estimated annual emissions avoidance is calculated as 305,875.99 tCO₂e. These reductions will contribute directly to Akenerji's Scope 2 decarbonization efforts and support national renewable energy targets. Comprehensive feasibility studies, including assessments of investment costs and payback periods, have been conducted. However, financial data related to the project will not be disclosed at this stage.

[Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

☑ Financial optimization calculations

(7.55.3.2) Comment

Several emissions reduction initiatives, particularly those targeting energy efficiency—such as the implementation of automatic lighting controls—demonstrate a strong return on investment (ROI). These measures not only contribute to reducing greenhouse gas emissions but also enhance operational cost-efficiency, supporting the company's broader sustainability and financial performance objectives.

Row 2

(7.55.3.1) Method

Select from:

✓ Internal incentives/recognition programs

(7.55.3.2) Comment

Monetary performance evaluations are applied to employees responsible for project development, implementation, and corporate environmental sustainability.

Additionally, an environmental improvement suggestion system is in place, encouraging employees to contribute ideas for enhancing the company's environmental performance, with monetary rewards provided for implemented suggestions.

Row 3

(7.55.3.1) Method

Select from:

☑ Employee engagement

(7.55.3.2) Comment

Akenerji annually implements capacity building and awareness-raising programs for all employees, covering topics such as environmental sustainability, climate change, energy efficiency, and sustainable office practices. These initiatives are designed to integrate sustainability principles throughout the organization and foster responsible operational behaviors.

Row 4

(7.55.3.1) Method

Select from:

✓ Dedicated budget for energy efficiency

(7.55.3.2) Comment

The primary source of both Akenerji's overall and Scope 1 emissions is the Erzin Natural Gas Combined Cycle Power Plant (NGCCPP). Akenerji places significant emphasis on energy and emission reduction initiatives. In line with this commitment, the company has invested in the development of the Erzin NGCCPP, a state-of-the-art, high-efficiency natural gas combined cycle power plant. Despite its advanced technology, continuous efforts are underway to further optimize the plant's operational efficiency and minimize emissions.

Row 5

(7.55.3.1) Method

Select from:

☑ Compliance with regulatory requirements/standards

(7.55.3.2) Comment

Akenerji is subject to an increasing number of regulatory requirements. The company complies with Turkey's MRV Regulation, enforced since 2014, which mandates the monitoring and reporting of greenhouse gas emissions from its thermal power plants. Additionally, Turkish legislation requires Akenerji to recycle waste oil generated at its power facilities. Greenhouse gas emissions for the years 2017 through 2023 have been monitored, reported, and independently verified in accordance with the ISO 14064 standard.

[Add row]

(7.58) Describe your organization's efforts to reduce methane emissions from your activities.

At the Erzin Natural Gas Combined Cycle Power Plant (NGCCPP), preventive maintenance activities include monthly methane leak inspections using ultrasonic detectors, and to date no pipeline leaks have been detected. Potential sources of methane emissions at the facility are limited to LPG cylinders for emergency kitchen use, gas detection instruments, and chromatograph calibration equipment. Procurement records confirm that no methane (CH₄) purchases were made in 2024, demonstrating that methane is not used in routine operations. While Akenerji does not have formal methane reduction targets at this stage—given the negligible role of methane in our operations—we are committed to maintaining best practices in leak detection and ensuring that any fugitive emissions remain minimized. Looking ahead, we will continue to align our monitoring practices with international standards and evaluate opportunities for further methane reduction initiatives in line with evolving regulatory and investor expectations

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

Yes

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ Other, please specify :Renewable Energy Generation

(7.74.1.3) Type of product(s) or service(s)

Power

Hydropower

(7.74.1.4) Description of product(s) or service(s)

Recognizing the critical importance of renewable energy for the global future, Akenerji has prioritized the continuation of renewable energy investments as a core strategic objective. Accordingly, all activities are conducted with a focus on expanding renewable capacity within a sustainable business model. To date, Akenerji has commissioned seven hydroelectric power plants and one wind power plant. By the end of 2021, renewable energy sources accounted for 320 MW, representing 26% of the company's total installed capacity. The company actively explores opportunities to increase capacity at existing facilities. For example, the installed capacity of the Ayyıldız Wind Power Plant was expanded from 15 MW to 28.2 MW following an investment initiated in 2016, with commissioning completed in 2017. Further expansion plans aim to increase Ayyıldız WPP's capacity by an additional 6.2 MW. Akenerji continues to conduct market research to identify high-capacity utilization and profitable wind and solar projects for inclusion in its portfolio. The company's largest ongoing renewable investment is the Kemah Dam Hydroelectric Power Plant, with a planned installed capacity of 198 MW. This project holds particular strategic significance as the largest hydroelectric investment in Akenerji's portfolio. Investment studies remain in progress, with the plant expected to generate approximately 560 GWh of electricity annually upon completion.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

1

Row 2

(7.74.1.1) Level of aggregation

Select from:

✓ Product or service

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ Other, please specify: Verified Carbon Standard (VCS), Gold Standard (GS)

(7.74.1.3) Type of product(s) or service(s)

Power

✓ Other, please specify: Verified Carbon Standard (VCS), Gold Standard (GS)

(7.74.1.4) Description of product(s) or service(s)

Carbon-neutral Certifications: Akenerji provides internationally recognized emission reduction certificates to customers through its renewable energy investments. These certifications allow companies to achieve carbon neutrality specifically for their electricity consumption. This offering supports environmentally conscious organizations in mitigating or fully offsetting their carbon footprints associated with electricity use and related processes.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

1

Row 3

(7.74.1.1) Level of aggregation

20	lact	from:	
ರರ	こしし	II OIII.	

✓ Product or service

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ Other, please specify :Energy Services for Efficiency

(7.74.1.3) Type of product(s) or service(s)

Power

✓ Other, please specify :Energy Services for Efficiency

(7.74.1.4) Description of product(s) or service(s)

Akenerji Energy Services is dedicated to reducing energy costs and enhancing clients' competitive advantage through a comprehensive range of offerings, including consultancy and asset management services. The company delivers efficiency-enhancing project consultancy and turnkey implementation projects tailored to industrial facilities. Additionally, investment-free, guaranteed energy efficiency services are provided to commercial buildings, offering customized solutions that maximize benefits for both Akenerji and its clients. Since 2015, Akenerji Energy Services has consistently delivered sector-leading energy efficiency results. In 2021, the company achieved average energy savings of 35% in electricity consumption and 55% in natural gas usage, all without requiring additional client investments.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ No

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

1 [Add row]

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

✓ No

- **C9. Environmental performance Water security**
- (9.1) Are there any exclusions from your disclosure of water-related data?

Select from:

✓ No

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Water withdrawals are monitored using calibrated on-site metering systems at Ayyıldız WPP, Bulam HPP, Uluabat HPP, and Erzin CCPP. For the remaining facilities (Burç HPP, Feke I HPP, Feke II HPP, Gökkaya HPP, and Himmetli HPP) water withdrawal volumes are calculated based on official water bills obtained from third-party suppliers or local water authorities.

(9.2.4) Please explain

Water withdrawal volumes are monitored using different approaches depending on the facility. At Ayyıldız WPP, Bulam HPP, Uluabat HPP, and Erzin CCPP, water use is continuously measured through calibrated on-site metering systems, providing real-time and accurate data. At Burç HPP, Feke I HPP, Feke II HPP, Gökkaya HPP, and Himmetli HPP, water withdrawals are calculated based on official water bills obtained from third-party suppliers or local water authorities. These invoices are used to estimate actual withdrawal volumes and ensure reliable reporting across all operations.

Water withdrawals - volumes by source

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

On-site calibrated meters for well water and seawater (continuous monitoring); official invoices for municipal water (monthly validation, estimated for annual reporting).

(9.2.4) Please explain

Water withdrawals are monitored by source at all facilities. At Ayyıldız WPP, Bulam HEPP, and Uluabat HPP, well water is continuously measured using on-site calibrated meters. At Erzin CCPP, seawater withdrawals are continuously monitored with automated meters, while municipal water use is validated via official invoices and well water use is metered. At Burç HPP, Feke I HPP, Feke II HPP, Gökkaya HPP, and Himmetli HPP, water is drawn from the municipal supply and consumption is monitored through monthly invoices; annual reporting is based on estimated values derived from these records. This approach ensures that water withdrawals are accurately tracked and reported across all sources and facilities.

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ 76-99

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

At Erzin NGCCGT, water quality is monitored for temperature, pH, total phosphorus, total coliform, fecal coliform, ammonia (NH₃), suspended solids, dissolved oxygen, BOD₅, and salinity. Water quality is not monitored at HEPPs and WPP, as operational requirements do not necessitate it.

(9.2.4) Please explain

Water quality monitoring is not required at WPPs and HEPPs because water use is solely for domestic purposes. At Erzin NGCCGT, seawater is treated using a reverse osmosis system to meet operational requirements and is used as cooling water in the process. Wastewater generated is treated in a permanent treatment plant and discharged into the sea in full compliance with national regulations. Seawater quality is closely monitored during both withdrawal and discharge to ensure safe and compliant operations.

Water discharges - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Continuous monitoring using on-site wastewater monitoring systems at Erzin NGCCPP, including the Continuous Wastewater Monitoring System. Domestic wastewater at HEPPs is collected in septic tanks and transported to municipal treatment plants, with volumes recorded and monitored.

(9.2.4) Please explain

100% of water discharges are regularly measured and monitored across all facilities. At Erzin NGCCPP, wastewater is discharged into the Mediterranean Sea, and deep-sea discharge is continuously monitored using the Continuous Wastewater Monitoring System as required by environmental permits. Monitoring is also overseen by the Ministry of Environment, Urbanization, and Climate Change. In WPP and HEPPs, domestic wastewater is collected in septic tanks and transported to

municipal treatment plants, ensuring that discharge volumes are accurately recorded and monitored. This approach guarantees reliable measurement and reporting of water discharges at all operations.

Water discharges – volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Akenerji's Erzin NGCCPP has a remote wastewater monitoring station on-site, and the discharge water is simultaneously monitored by the Ministry of Environment, Urbanization, and Climate Change.

(9.2.4) Please explain

At Erzin NGCCPP, wastewater volumes are monitored on-site through a remote monitoring station and simultaneously by the Ministry of Environment, Urbanization, and Climate Change. At WPP and HEPPs, domestic wastewater volumes are estimated based on collection in septic tanks and transport to municipal treatment plants. 100% of water discharges are regularly measured and monitored across all facilities. At Erzin NGCCPP, wastewater is discharged into the Mediterranean Sea, and deep-sea discharge is continuously monitored using the Continuous Wastewater Monitoring System as required by environmental permits. Monitoring is also overseen by the Ministry of Environment, Urbanization, and Climate Change. In HEPPs, domestic wastewater is collected in septic tanks and transported to municipal treatment plants, ensuring that discharge volumes are accurately recorded and monitored. This approach guarantees reliable measurement and reporting of water discharges at all operations.

Water discharges - volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Akenerji's Erzin NGCCPP has a remote wastewater monitoring station on-site, and the discharge water is simultaneously monitored by the Ministry of Environment, Urbanization, and Climate Change.

(9.2.4) Please explain

At Erzin NGCCPP, all wastewater is treated on-site to meet national regulatory standards before discharge into the Mediterranean Sea. The treatment process includes advanced techniques such as reverse osmosis, ensuring compliance with legal limits. Deep-sea discharges are continuously monitored as part of environmental permit requirements, with parameters including pH, COD, BOD, and suspended solids tracked in real time. At other facilities, domestic wastewater is collected in septic tanks and transported to municipal treatment plants for proper treatment and disposal. These treatment methods are regularly monitored to ensure compliance with both internal standards and regulatory requirements.

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Akenerji's Erzin NGCCPP has a remote wastewater monitoring station on-site, and the discharge water is simultaneously monitored by the Ministry of Environment, Urbanization, and Climate Change.

(9.2.4) Please explain

At Erzin NGCCPP, wastewater is treated on-site using advanced processes, including reverse osmosis, and discharged into the Mediterranean Sea in compliance with national regulations. Wastewater quality is monitored for pH, temperature, suspended solids (TSS), COD, BOD, oil and grease, total phosphorus, total cyanide, zinc, and free chlorine through calibrated on-site systems and periodic laboratory analyses. Discharge volumes and deep-sea discharges are continuously monitored as part of environmental permit requirements to ensure compliance with legal limits. At HEPPs and WPP, only domestic wastewater is generated, which is collected in septic tanks and transported to municipal treatment plants for proper treatment and disposal. These treatment methods are regularly monitored to comply with both internal standards and regulatory requirements.

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

Erzin Natural Gas Combined Cycle Power Plant is the only facility that discharges directly into a receiving environment. In this plant, the parameters related to nitrates, phosphates, and other priority substances are not present in the wastewater measurement results, as these are not part of the typical discharge profile. However, during seawater quality monitoring, we assess total phosphorus and nitrate levels in compliance with environmental regulations.

Water discharge quality - temperature

(9.2.1) % of sites/facilities/operations

Select from:

☑ 76-99

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Akenerji's Erzin NGCCPP has a remote wastewater monitoring station on-site, and the discharge water is simultaneously monitored by the Ministry of Environment, Urbanization, and Climate Change.

(9.2.4) Please explain

For Erzin NGCCPP, seawater is the source for withdrawal and discharge. Inline with Erzin NGCCPP's environmental permit; the relevant KPIs should be measured, monitored and expected to be met in certain limits (Eg; monitoring the standard effluent parameters, temperature rise in water discharge).

Water consumption - total volume

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Total water consumption is monitored through on-site meters and official invoices.

(9.2.4) Please explain

100% of water withdrawals and discharges across all operational sites are systematically measured and monitored. This ensures complete and consistent accounting of total water consumption in alignment with regulatory and reporting requirements.

Water recycled/reused

(9.2.1) % of sites/facilities/operations

Select from:

☑ 76-99

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Total water recycled is measured using meters.

(9.2.4) Please explain

At Erzin NGCCPP, the cooling water technology used is a recirculating or closed-loop system, which reuses the cooling water instead of releasing it directly back into the sea.

The provision of fully-functioning, safely managed WASH services to all workers

(9.2.1) % of sites/facilities/operations

Select from:

76-99

(9.2.2) Frequency of measurement

Select from:

☑ Other, please specify :Not in a specifically defined regular manner

(9.2.3) Method of measurement

It is measured by using meters.

(9.2.4) Please explain

At Erzin NGCCPP, water used for facilities providing fully functioning WASH services for all workers is not measured separately. As a result, water aspects related to WASH services are not regularly measured and monitored at this plant. Among all plants, only one HEPP conducts regular monitoring of water use associated with WASH services.

[Fixed row]

(9.2.1) For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?

Fulfilment of downstream environmental flows

(9.2.1.1) % of sites/facilities/operations measured and monitored

Select from:

100%

(9.2.1.2) Please explain

Akenerji conducts continuous monitoring and analysis of downstream flows at all its hydroelectric power plants to ensure environmental compliance. In accordance with regulatory requirements, the Ministry of Environment, Urbanization and Climate Change also monitors the environmental flow, which refers to the minimum amount of water that must be maintained in the riverbed along the penstock, through an online monitoring system.

Sediment loading

(9.2.1.1) % of sites/facilities/operations measured and monitored

Select from:

☑ 100%

(9.2.1.2) Please explain

Sediment accumulation upstream of the reservoir is constantly monitored as part of the hydroelectric power plant's operating regulations.

Other, please specify

(9.2.1.1) % of sites/facilities/operations measured and monitored

Select from:

✓ Not relevant

(9.2.1.2) Please explain

Not applicable. [Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

13211.89

(9.2.2.2) Comparison with previous reporting year

Select from:

Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

In 2024, Akenerji reported total water withdrawals, discharges, and consumption across all operations in line with its corporate water mass balance approach. Total water withdrawal in 2024 was 13,211.9 ML, compared to 11,984.24 ML in 2023, representing an increase of approximately 10.2%. Akenerji defined company-specific thresholds for classifying year-on-year changes, where changes of 0–15% are categorized as "higher" / "lower" and changes of greater than 15% are categorized as "much higher" / "much lower". Based on these thresholds, the 2024 total water withdrawal reflects an increase that is classified as "higher". While the increase appears as a year-on-year growth in absolute terms, it is important to note that the 2023 figure was relatively low due to prolonged production stoppages at certain facilities. When adjusting for this anomaly, 2024 withdrawal volumes are broadly consistent with operational water use in a typical production year. In 2024, all facilities were included in the corporate water footprint calculation, and the data underwent external verification. This confirmed that total water consumption volumes did not significantly deviate from normalized operational levels. For five-year forecast, Akenerji expect a lower water demand under business-as-usual conditions. Operational improvements, efficiency measures, and water management initiatives at Akenerji's facilities are expected to further reduce overall water needs, thereby lowering water withdrawal levels over time.

Total discharges

(9.2.2.1) Volume (megaliters/year)

11220.68

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

In 2024, total water discharge amounted to 11,220.683 ML, compared to 10,158.62 ML in 2023, reflecting an increase of approximately 10.5%. Akenerji defined company-specific thresholds for classifying year-on-year changes, where changes of 0–15% are categorized as "higher" / "lower" and changes of greater than 15% are categorized as "much higher" / "much lower". Based on these thresholds, the 2024 total water withdrawal reflects an increase that is classified as "higher". Based on this internal classification, the increase in total discharges in 2024 is also categorized as "higher." Despite this rise, it is important to note that discharge volumes in 2023 were temporarily lowered due to planned maintenance activities at the Erzin facility, and the observed increase in 2024 reflects a return to normalized operational conditions. Akenerji continued its internal monitoring efforts for both wastewater and deep seawater discharges in 2024. In compliance with environmental regulations, annual underwater inspections using professional divers are also carried out to detect any potential leakages, blockages, or other issues in the marine outfall system.

Total consumption

(9.2.2.1) Volume (megaliters/year)

1991.21

(9.2.2.2) Comparison with previous reporting year

Select from:

Much higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

In 2024, Akenerji's total water consumption reached 1,991.21 ML, up from 1,320.69 ML in 2023, indicating an increase of approximately 50.7%. Akenerji defined company-specific thresholds for classifying year-on-year changes, where changes of 0–15% are categorized as "higher" / "lower" and changes of greater than 15% are categorized as "much higher" / "much lower". Based on these thresholds, the 2024 total water withdrawal reflects an increase that is classified as "higher". It is important to note that this increase is primarily the result of the normalization of operational conditions, particularly at the Erzin facility, where planned maintenance activities in 2023 temporarily lowered both discharge and overall water use.

[Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

✓ Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

0.4

(9.2.4.3) Comparison with previous reporting year

Select from:

Higher

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.4.5) Five-year forecast

Select from:

Lower

(9.2.4.6) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

0.00

(9.2.4.8) Identification tool

Select all that apply

✓ WRI Aqueduct

(9.2.4.9) Please explain

According to the WRI Aqueduct Water Risk Atlas (water stress layer), Akenerji's Erzin Natural Gas Combined Cycle Power Plant is located in an area classified as low—medium water stress (10–20%). In the reporting year, total water withdrawal at Akenerji amounted to 3.89 ML of municipal water, 0.08 ML of third-party purchased water, 0.40 ML of groundwater, and 13,207.53 ML of seawater. For the purpose of assessing withdrawals from stressed sources, only groundwater and seawater are considered, as these represent direct freshwater or coastal extractions. Because Erzin NGCCPP's low—medium stress location, only the 0.40 ML of groundwater is classified as water withdrawn from a water-stressed area, representing approximately 0.003% of total withdrawals. Five-year operational forecasts anticipate improved process efficiency at Erzin NGCCPP through ongoing optimization of cooling systems, heat-rate performance, and water-use intensity. These measures are expected to further reduce specific water withdrawal per megawatt-hour generated.

[Fixed row]

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

There is no fresh surface water use at Akenerji.

Brackish surface water/Seawater

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

13207.53

(9.2.7.3) Comparison with previous reporting year

Select from:

Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

Water withdrawal increased by 10.21% compared to previous year in Erzin NGCCPP in previous reporting year. The total volume withdrawn consists entirely of seawater, and according to company-specific thresholds, this increase is classified as a "higher" change.

Groundwater - renewable

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

0.4

(9.2.7.3) Comparison with previous reporting year

Select from:

☑ This is our first year of measurement

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

Unknown

(9.2.7.5) Please explain

No groundwater was withdrawn in 2023. In 2024, the volume of groundwater withdrawn was calculated as 0.4 megaliters.

Groundwater - non-renewable

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

No renewable groundwater sources are used. Therefore, no related value has been calculated.

Produced/Entrained water

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

No produced/entrained water are used. Therefore, no related value has been calculated.

Third party sources

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

3.97

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Much lower

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

Unknown

(9.2.7.5) Please explain

Total third party sources in 2024 was calculated by including both the volume of water purchased from third parties and the volume withdrawn from the municipal water supply. While the total third party sources water withdrawal was 7.42 megaliters in 2023, it decreased to 3.97 megaliters in 2024. This represents a 47.5% reduction in total third party sources withdrawal compared to the previous year. This reduction is the result of increased employee awareness and the use of water-

efficient equipment. For Akenerji, the threshold for change limits has been set at 15%. Compared to the previous year, the value decreased by 47.5%, and therefore, this decreasehas been classified as "much lower."

[Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

No discharges have been made to fresh surface water sources.

Brackish surface water/seawater

(9.2.8.1) Relevance

Select from:

Relevant

(9.2.8.2) Volume (megaliters/year)

11219.79

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.8.5) Please explain

In 2024, deep-sea discharge from the Erzin Natural Gas Combined Cycle Power Plant rose to 11,219.79 ML, a 10.45 % increase compared to 10,158.62 ML in 2023, despite a decrease in net electricity generation (from 801.03 GWh in 2023 to 625.04 GWh in 2024). This apparent divergence is mainly due to process-related and seasonal factors rather than production volume. One of the main drivers is cooling system requirements that depend on ambient temperature, seawater quality, and operational start-stop cycles, which can increase total intake and discharge even when output is lower.

Groundwater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

No discharges have been made to groundwater water sources.

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

0.89

(9.2.8.3) Comparison with previous reporting year

Select from:

Much higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify : Change in regular operating practices

(9.2.8.5) Please explain

In 2024, third-party wastewater discharge at Akenerji's Erzin Natural Gas Combined Cycle Power Plant amounted to 0.89 ML, whereas no third-party discharge occurred in 2023. All discharges were carried out in full compliance with regulatory permits and quality standards.

[Fixed row]

(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

Tertiary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

At the Erzin Natural Gas Combined Cycle Power Plant, seawater is treated using a reverse osmosis to make it suitable for use. However, no tertiary treatment methods are applied for wastewater treatment. Hence, it is not relevant.

Secondary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

11215.86

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

☑ 91-99

(9.2.9.6) Please explain

In 2023, the total volume of water that underwent secondary treatment was 10,158.62 megaliters, whereas in 2024, this amount increased to 11,215.86 megaliters. The discharged water does not contain any pollutants; it consists solely of cooling water. Akenerji defined company-specific thresholds for classifying year-on-year changes, where changes of 0–15% are categorized as "higher" / "lower" and changes of greater than 15% are categorized as "much higher" / "much lower". Based on these thresholds, the 2024 total water withdrawal reflects an increase that is classified as "higher". Compared to the previous year, the value increased by 10.4%, and therefore, this increase has been classified as "higher."

Primary treatment only

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Much lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ Less than 1%

(9.2.9.6) Please explain

In 2024, the total volume of water that underwent primary treatment was calculated as 3.93 megaliters.

Discharge to the natural environment without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

At the Erzin Natural Gas Combined Cycle Power Plant, we discharge water into the deep sea in accordance with our environmental permit. We have a wastewater treatment plant that treats industrial wastewater, domestic wastewater, and rainwater. The treatment process includes the removal of Total Suspended Solids, neutralization, and wastewater treatment plant processes. We do not discharge wastewater to the natural environment without treatment. Hence, it is not relevant.

Discharge to a third party without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

0.89

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

Much lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ Less than 1%

(9.2.9.6) Please explain

Akenerji does not conduct on-site treatment of wastewater generated from our 1 wind power plant and 7 hydroelectric power plants; instead, the domestic wastewater is collected in septic tanks and transported by sewage trucks to municipal treatment plants, in accordance with our agreements with the municipality.

Other

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

There is no other wastewater treatment or discharge system at the facility. [Fixed row]

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ Yes, we have assessed this value chain stage and identified facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.2) Total number of facilities identified

9

(9.3.3) % of facilities in direct operations that this represents

Select from:

☑ 100%

(9.3.4) Please explain

At Akenerji, we conduct facility-based assessments to evaluate water-related dependencies, impacts, risks, and opportunities. Substantive issues have been identified at all 9 of our facilities, representing 100% of our direct operations. Our portfolio comprises seven hydroelectric power plants (HEPPs), one wind power plant (WPP), and one natural gas combined cycle power plant (NGCCPP). Each facility operates in basins with different water stress levels, which allows us to tailor our management strategies to local conditions. Building on this approach, we applied TCFD (Task Force on Climate-related Financial Disclosures) and TNFD (Taskforce on Nature-related Financial Disclosures) methodologies to conduct DIRO (dependencies, impacts, risks, and opportunities) assessments for each facility. Recognizing that results differ across sites, we incorporated scenario analysis to ensure a more accurate and forward-looking evaluation of climate- and nature-related risks and opportunities. These assessments were carried out in alignment with international frameworks and have been made publicly available through our corporate website, reinforcing our commitment to transparency.

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

☑ No, we have assessed this value chain stage but did not identify any facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.4) Please explain

In 2024, we conducted DIRO (dependencies, impacts, risks, opportunities) assessments at the corporate level and identified substantive water-related issues across all 9 facilities in our direct operations—representing 100% coverage (portfolio: 7 HEPPs, 1 WPP, 1 NGCCPP). Assessments were carried out using TCFD and TNFD methodologies with scenario analysis, recognizing site-specific differences; results were publicly disclosed on our corporate website to ensure transparency. For the upstream value chain, we performed an initial corporate-level screening and identified substantive risk and opportunity areas (e.g., fuel supply, equipment procurement, contractor services). However, quantitative evaluation of their impacts on our operations has not yet been completed. This means that, while upstream exposure areas are defined, metrics such as potential volumetric impacts, cost implications, or continuity risks are not yet quantified. We plan to develop this capability in the next reporting cycle in alignment with TCFD/TNFD guidance—including supplier engagement, location-based water stress mapping (e.g., Aqueduct), and scenario-based quantification—so that upstream risks and opportunities can be reported with measurable indicators.

[Fixed row]

(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Row 1

(9.3.1.1) Facility reference number

Select from:

✓ Facility 1

(9.3.1.2) Facility name (optional)

Feke I HEPP

(9.3.1.3) Value chain stage

Sel	lect	from:	
-		,, 0,,,,	

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

✓ Other, please specify :Seyhan

(9.3.1.8) Latitude

37.82288

(9.3.1.9) Longitude

35.93285

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.41
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
0.4
(9.3.1.20) Withdrawals from third party sources

0.11
(9.3.1.21) Total water discharges at this facility (megaliters)
0.24
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
0.24
(9.3.1.27) Total water consumption at this facility (megaliters)

0.17

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Much lower

(9.3.1.29) Please explain

Location: Adana Energy Source&Type: River, Hydro Installed Capacity: 30 MW Date of Operation: 2012 Capacity Utilization Rate: 29.14% At Feke I HEPP, water withdrawal decreased from 0.48 megaliters in 2023 to 0.41 megaliters in 2024, representing a 14.58% reduction and classified as lower according to company-specific thresholds. Over the same period, water discharge increased from 0.22 megaliters to 0.24 megaliters, a 9.09% rise classified as higher, while water consumption fell from 0.26 megaliters to 0.17 megaliters, a 34.62% decrease classified as much lower.

Row 2

(9.3.1.1) Facility reference number

Select from:

✓ Facility 2

(9.3.1.2) Facility name (optional)

Feke II HEPP

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin
Turkey ☑ Other, please specify :Seyhan
(9.3.1.8) Latitude
37.7442
(9.3.1.9) Longitude
35.86424
(9.3.1.10) Located in area with water stress
Select from: ☑ Yes
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.21
(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0.2

(9.3.1.20) Withdrawals from third party sources

0.01

(9.3.1.21) Total water discharges at this facility (megaliters)

0.07

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

☑ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.07

(9.3.1.27) Total water consumption at this facility (megaliters)

0.14

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

Location: Adana Energy Source&Type: Reservoir, Hydro Installed Capacity: 70 MW Date of Operation: 2010 Capacity Utilization Rate: 14.60% At Feke II HEPP, water withdrawal declined from 0.24 megaliters in 2023 to 0.21 megaliters in 2024, a 12.50% decrease classified as lower. Water discharge remained unchanged at 0.07 megaliters, while water consumption dropped from 0.17 to 0.14 megaliters, a 17.65% reduction categorized as much lower.

Row 3

(9.3.1.1) Facility reference number

Select from:

✓ Facility 3

(9.3.1.2) Facility name (optional)

Himmetli HEPP

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

✓ Other, please specify :Seyhan

(9.3.1.8) Latitude

37.87612

(9.3.1.9) Longitude

35.9983

(9.3.1.10) Located in area with water stress

Select from:

✓ Yes
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ✓ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
2.05
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable

(9.3.1.19) Withdrawals from produced/entrained water

2.04

(9.3.1.20) Withdrawals from third party sources
0.01
(9.3.1.21) Total water discharges at this facility (megaliters)
0.28
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater
o
(9.3.1.26) Discharges to third party destinations
0.28
(9.3.1.27) Total water consumption at this facility (megaliters)
1.77
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

✓ Lower

(9.3.1.29) Please explain

Location: Adana Energy Source&Type: River Type Hydro Installed Capacity: 27 MW Date of Operation: 2012 Capacity Utilization Rate: 28.95% Himmetli HEPP recorded a 10.48% decrease in water withdrawal from 2.29 to 2.05 megaliters, which is classified as lower. Water discharge increased from 0.25 to 0.28 megaliters, a 12.00% rise falling into the higher category, whereas water consumption decreased from 2.04 to 1.77 megaliters, a 13.24% drop classified as lower.

Row 4

(9.3.1.1) Facility reference number

Select from:

✓ Facility 4

(9.3.1.2) Facility name (optional)

Gökkaya HEPP

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Turkey ☑ Other, please specify :Seyhan
(9.3.1.8) Latitude
37.86135
(9.3.1.9) Longitude
36.07391
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
1.19
(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

☑ Higher

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
1.19
(9.3.1.20) Withdrawals from third party sources
0.01
(9.3.1.21) Total water discharges at this facility (megaliters)
0.1
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Much lower
(9.3.1.23) Discharges to fresh surface water
0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.1

(9.3.1.27) Total water consumption at this facility (megaliters)

1.09

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

Location: Adana Energy Source&Type: River, Hydro Installed Capacity: 30 MW Date of Operation: 2012 Capacity Utilization Rate: 27.06% At Gökkaya HEPP, water withdrawal rose from 1.05 to 1.19 megaliters, a 13.33% increase classified as higher. Water discharge decreased from 0.12 to 0.10 megaliters, representing a 16.67% reduction and classified as much lower, while water consumption increased from 0.93 to 1.09 megaliters, a 17.20% rise classified as much higher.

Row 5

(9.3.1.1) Facility reference number

Select from:

✓ Facility 5

(9.3.1.2) Facility name (optional)

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

☑ Other, please specify :Ceyhan

(9.3.1.8) Latitude

37.46345

(9.3.1.9) Longitude

38.17085

(9.3.1.10) Located in area with water stress

Select from: ✓ No
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.07
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
0

(9.3.1.20) Withdrawals from third party sources
0.07
(9.3.1.21) Total water discharges at this facility (megaliters)
0.01
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ About the same
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater
o
(9.3.1.26) Discharges to third party destinations
0.01
(9.3.1.27) Total water consumption at this facility (megaliters)
0.06
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

Much lower

(9.3.1.29) Please explain

Location: Adıyaman Energy Source&Type: River Type Hydro Installed Capacity: 28 MW Date of Operation: 2010 Capacity Utilization Rate: 27.62% Burç HEPP experienced a 30.00% decrease in water withdrawal from 0.10 to 0.07 megaliters, which is classified as much lower. Water discharge remained steady at 0.01 megaliters while water consumption fell from 0.09 to 0.06 megaliters, a 33.33% reduction also classified as much lower.

Row 6

(9.3.1.1) Facility reference number

Select from:

✓ Facility 6

(9.3.1.2) Facility name (optional)

Bulam HEPP

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Turkey ✓ Other, please specify :Ceyhan
(9.3.1.8) Latitude
37.97912
(9.3.1.9) Longitude
38.29615
(9.3.1.10) Located in area with water stress
Select from: ☑ No
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.08
(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0.07
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
0
(9.3.1.21) Total water discharges at this facility (megaliters)
0.01
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ About the same
(9.3.1.23) Discharges to fresh surface water

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.01

(9.3.1.27) Total water consumption at this facility (megaliters)

0.07

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Location: Adıyaman Energy Source&Type: River Type Hydro Installed Capacity: 7 MW Date of Operation: 2010 Capacity Utilization Rate: 43.60% At Bulam HEPP, water withdrawal decreased from 0.09 to 0.08 megaliters, an 11.11% reduction classified as lower. Water discharge remained unchanged at 0.01 megaliters, and water consumption decreased from 0.08 to 0.07 megaliters, a 12.50% drop similarly classified as lower.

Row 7

(9.3.1.1) Facility reference number

Select from:

✓ Facility 7

(9.3.1.2) Facility name (optional)

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

✓ Other, please specify :Susurluk

(9.3.1.8) Latitude

40.15333

(9.3.1.9) Longitude

28.72394

(9.3.1.10) Located in area with water stress

Select from: ✓ Yes
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from: ☑ Hydropower
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.27
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0.26
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o

(9.3.1.20) Withdrawals from third party sources
o
(9.3.1.21) Total water discharges at this facility (megaliters)
0.14
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Much higher
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
0.14
(9.3.1.27) Total water consumption at this facility (megaliters)
0.12
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

Much lower

(9.3.1.29) Please explain

Location: Bursa Energy Source&Type: Reservoir Hydro Installed Capacity: 100 MW Date of Operation: 2010 Capacity Utilization Rate: 26.56% Uluabat HEPP saw a 10.00% decrease in water withdrawal from 0.30 to 0.27 megaliters, which is classified as lower. Water discharge increased from 0.12 to 0.14 megaliters, a 16.67% rise falling into the much higher category, while water consumption declined from 0.18 to 0.12 megaliters, a 33.33% decrease classified as much lower.

Row 8

(9.3.1.1) Facility reference number

Select from:

✓ Facility 8

(9.3.1.2) Facility name (optional)

Erzin NGCCPP

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

☑ Other, please specify: Erzin NGCCPP does not require a river basin designation, as it does not rely on freshwater from a river basin for its operations. Instead, the plant sources its cooling and process water from the Mediterranean Sea.

(9.3.1.8) Latitude

36.92839

(9.3.1.9) Longitude

36.05164

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.11) Primary power generation source for your electricity generation at this facility

Select from:

✓ Gas

(9.3.1.13) Total water withdrawals at this facility (megaliters)

13207.55

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ Higher

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
13207.53
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
0.02
(9.3.1.21) Total water discharges at this facility (megaliters)
11219.79
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Higher
(9.3.1.23) Discharges to fresh surface water

(9.3.1.24) Discharges to brackish surface water/seawater

11219.79

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0

(9.3.1.27) Total water consumption at this facility (megaliters)

1987.75

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

Location: Hatay Energy Source: Natural Gas Installed Capacity: 904 MW Date of Operation: 2014 Capacity Utilization Rate: 40.96% At Erzin NGCCPP, water withdrawal rose from 11,989.96 to 13,207.55 megaliters, a 10.16% increase classified as higher. Water discharge increased from 10,689.81 to 11,219.79 megaliters, a 4.96% rise also classified as higher, while water consumption jumped from 1,300.15 to 1,987.75 megaliters, representing a 52.89% increase classified as much higher.

Row 9

(9.3.1.1) Facility reference number

Select from:

✓ Facility 9

(9.3.1.2) Facility name (optional)

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

☑ Other, please specify: The Ayyıldız Wind Power Plant (WPP) is located in the Eastern Black Sea Basin. While it does not rely on water resources from the basin, geographically it falls within the boundaries of this river basin.

(9.3.1.8) Latitude

40.35647

(9.3.1.9) Longitude

27.89369

(9.3.1.10) Located in area with water stress
Select from:
✓ Yes
(9.3.1.11) Primary power generation source for your electricity generation at this facility
Select from:
✓ Wind
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.07
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from:
✓ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0.06
(9.3.1.18) Withdrawals from groundwater - non-renewable

(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
0.01
(9.3.1.21) Total water discharges at this facility (megaliters)
0.04
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Much higher
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
O
(9.3.1.26) Discharges to third party destinations
0.04
(9.3.1.27) Total water consumption at this facility (megaliters)
0.02

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

Location: Balıkesir Energy Source: Wind Date of Operation: 2009 Installed Capacity: 28.20 MW Capacity Utilization Rate: 33.63% Ayyıldız WPP recorded a 40.00% increase in water withdrawal from 0.05 to 0.07 megaliters, which is classified as much higher. Water discharge rose from 0.03 to 0.04 megaliters, a 33.33% increase also classified as much higher, while water consumption remained stable at 0.02 megaliters.

[Add row]

(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?

Water withdrawals - total volumes

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14046:2014

Water withdrawals - volume by source

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

Water withdrawals – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

Third-party verification through accredited laboratories

Water discharges – total volumes

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14046:2014

Water discharges - volume by destination

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14046:2014

Water discharges – volume by final treatment level

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14046:2014

Water discharges – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

76-100

(9.3.2.2) Verification standard used

Third-party verification through accredited laboratories

Water consumption - total volume

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14046:2014 [Fixed row] (9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

1

(9.5.2) Total water withdrawal efficiency

0.00

(9.5.3) Anticipated forward trend

The reverse osmosis system used in Erzin NGCCPP, which accounts for 99% of the water footprint of Akenerji power generation facilities, ensures water recovery and more efficient use of water resources. In addition to resource efficiency, the reverse osmosis method used is planned to prevent loss of revenue by providing less maintenance and breakdowns, uninterrupted production and directly increase profitability.

[Fixed row]

(9.7) Do you calculate water intensity for your electricity generation activities?

Select from:

Yes

(9.7.1) Provide the following intensity information associated with your electricity generation activities.

Row 1

(9.7.1.1) Water intensity value (m3/denominator)

0.3

(9.7.1.2) Numerator: water aspect

Select from:

✓ Total water consumption

(9.7.1.3) **Denominator**

Select from:

✓ Other, please specify :Gross electricity generation (GWh)

(9.7.1.4) Comparison with previous reporting year

Select from:

Much lower

(9.7.1.5) Please explain

In 2024, total water consumption was 1991.21 megaliters, while total gross electricity generation reached 3,968.77 GWh, resulting in a significantly lower intensity value of approximately 0.30 Megaliters/GWh. Compared to the previous year, the reduction in intensity was calculated as 3.18%.

Row 2

(9.7.1.1) Water intensity value (m3/denominator)

3.33

(9.7.1.2) Numerator: water aspect

Select from:

✓ Total water withdrawals

(9.7.1.3) Denominator

Select from:

✓ Other, please specify :Gross electricity generation (GWh)

(9.7.1.4) Comparison with previous reporting year

Select from:

Much higher

(9.7.1.5) Please explain

In 2024, total water withdrawals was 13,211.89 megaliters, while total gross electricity generation reached 3968.77 GWh, resulting in a significantly lower intensity value of approximately 3.33 Megaliters/GWh. Compared to the previous year, the increase in intensity was calculated as 16.8%. The increase is due to higher production volumes compared to the previous year.

Row 3

(9.7.1.1) Water intensity value (m3/denominator)

2.83

(9.7.1.2) Numerator: water aspect

Select from:

✓ Other, please specify: Total water discharge

(9.7.1.3) Denominator

Select from:

☑ Other, please specify :Gross electricity generation (GWh)

(9.7.1.4) Comparison with previous reporting year

Select from:

Higher

(9.7.1.5) Please explain

In 2024, total water discharge was 11,220.68 megaliters, while total gross electricity generation reached 3968.77 GWh, resulting in a significantly lower intensity value of approximately 2.83 Megaliters/GWh. Compared to the previous year, the increase in intensity was calculated as 11.4%. The increase is due to higher production volumes compared to the previous year.

[Add row]

290

(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?

Products contain hazardous substances	Comment
Select from: ✓ No	Akenerji generates electricity, which is inherently free of hazardous substances.

[Fixed row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

✓ Yes

(9.14.2) Definition used to classify low water impact

Akenerji operates one wind power plant, seven hydroelectric power plants, and one natural gas combined cycle power plant. Among these, our seven hydro power plants and one wind power plant are clearly low water impact facilities due to their inherently sustainable operational characteristics. Our hydroelectric power plants due to their operational design, which enables the withdrawal and return of water to its original source without any loss of mass. During electricity generation, water merely passes through the turbines to convert its potential energy into mechanical and electrical energy, and this process does not result in permanent physical or chemical changes to the water. As the water moves within a closed-loop system, there is no significant evaporation or consumptive use, ensuring that the overall water balance remains intact. Furthermore, the natural aeration that occurs as water flows through the turbines enhances dissolved oxygen levels, supporting aquatic ecosystems and improving the ecological quality of the receiving body. No chemicals or industrial additives are introduced during the process, preserving water quality and even allowing for potential improvements through increased oxygenation. In addition, hydroelectric generation does not produce thermal pollution and does not divert water to other basins or disrupt the natural hydrological cycle. In addition to hydroelectric operations, Akenerji's wind power plant represents an even more distinct example of low water impact technology. Wind energy generation relies solely on atmospheric kinetic energy and requires no water withdrawal, consumption, or discharge for electricity production or cooling. This complete absence of water use during both construction and operational phases ensures that

wind power generation exerts virtually no pressure on local freshwater resources, making it one of the cleanest and most water-efficient forms of renewable energy available.

(9.14.4) Please explain

Akenerji classifies its seven hydroelectric power plants and one wind power plant as low water impact based on their negligible effects on water quantity, quality, and local ecosystems. Our hydroelectric facilities operate with non-consumptive water use, where water is withdrawn and returned to the same source without any loss of mass. The generation process does not involve chemicals, thermal discharge, or cross-basin diversion, and natural aeration during turbine passage even increases dissolved oxygen levels, supporting aquatic life. Our wind power plant goes further by eliminating water use entirely, as wind energy generation requires no water withdrawal, consumption, or discharge at any stage of operation. This approach ensures that both technologies maintain the natural hydrological cycle and place minimal to no pressure on freshwater resources.

[Fixed row]

(9.15) Do you have any water-related targets?

Select from:

Yes

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

We currently do not have a formal quantitative target for reducing water pollution. However, all of our facilities operate with discharge quality significantly below legal thresholds, demonstrating effective environmental management beyond compliance. Continuous monitoring systems ensure that pollutant levels are tracked in real time and remain within safe limits. Within the next two years, we plan to establish specific reduction targets aimed at further minimizing our potential impact on water quality. These targets will be aligned with TCFD, TNFD, and SDG frameworks and disclosed publicly.

Water withdrawals

(9.15.1.1) Target set in this category

Select from:

Yes

Water, Sanitation, and Hygiene (WASH) services

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

At Akenerji, we consistently maintain high standards of health, safety, and environmental care, and 100% of our facilities already provide safe access to clean water, sanitation, and hygiene (WASH) for employees. However, we currently do not have formal quantitative targets set for WASH. This reflects our prioritization of other strategic areas in 2023 and our ongoing evaluation of resource allocation. Recognizing the important role of WASH principles in ensuring the well-being of employees and the communities around our operations, we plan to revisit and potentially incorporate WASH-related objectives into our sustainability strategy within the next two years. These future objectives will be designed to enhance our contribution to SDG 6 (Clean Water and Sanitation) and to strengthen both community health and environmental quality.

Other

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

Akenerji did not establish formal quantitative targets under the "Other" water category in 2024. However, our Corporate Sustainability Management Handbook (2021) provides the strategic foundation for integrating water considerations into our broader sustainability agenda. While we currently focus on compliance and operational efficiency, we recognize that water-related issues extend beyond withdrawals, pollution, and WASH. Aligned with the United Nations Sustainable Development Goals (SDG 6: Clean Water and Sanitation), we aim to strengthen our role in ecosystem protection, basin-level water stewardship, and community engagement on

sustainable water use. Over the next two years, we plan to define and disclose comprehensive goals under this category, ensuring a more holistic and impactful approach to water management across our value chain.
[Fixed row]

(9.15.2) Provide details of your water-related targets and the progress made.

Row 1

(9.15.2.1) Target reference number

Select from:

✓ Target 1

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Water withdrawals

✓ Other water withdrawals, please specify: Reduction in water consumption (megaliters/year)

(9.15.2.4) Date target was set

12/30/2023

(9.15.2.5) End date of base year

12/30/2021

(9.15.2.6) Base year figure

2725.73

(9.15.2.7) End date of target year

12/30/2025

(9.15.2.8) Target year figure

2453.16

(9.15.2.9) Reporting year figure

1991.21

(9.15.2.10) Target status in reporting year

Select from:

Achieved

(9.15.2.11) % of target achieved relative to base year

269

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

Akenerji has set a quantitative target to reduce total water consumption across all facilities. The baseline year is 2021, when total consumption was 2,725.73 megaliters. Our objective is to achieve a 10% reduction by the end of 2025, equivalent to lowering consumption to around 2,453.16 megaliters. As of 2024, actual consumption was 1,991.21 megaliters, which is already well below the interim target level. This performance reflects both operational efficiency measures—such as optimized cooling water management—and fluctuations in production levels due to maintenance schedules. Current progress demonstrates that we are ahead of our 2025 target trajectory, and we will continue to focus on sustaining these improvements to ensure long-term water efficiency across our portfolio.

(9.15.2.15) Actions which contributed most to achieving or maintaining this target

To achieve our water consumption reduction target, Akenerji has implemented a multi-step plan focused on optimizing water use across all facilities, particularly in high-consumption areas such as the Erzin NGCCPP. Key actions include: Enhanced monitoring systems to track usage in real time, enabling immediate operational adjustments and more efficient water management across all sites. Integration of water quality monitoring to ensure continuous compliance with environmental standards while maintaining high efficiency. Employee training programs on water efficiency practices, fostering a culture of conservation and ensuring consistent application of best practices across facilities.

(9.15.2.16) Further details of target

Our objective is to reduce total water consumption across all our facilities, including our head office. We have set 2021 as the reference year and aim to achieve a reduction of approximately 10% by the end of 2025.

[Add row]

C11. Environmental performance - Biodiversity

(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

Actions taken in the reporting period to progress your biodiversity-related commitments
Select from: ☑ No, we are not taking any actions to progress our biodiversity-related commitments, but we plan to within the next two years

[Fixed row]

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?

Does your organization use indicators to monitor biodiversity performance?	Indicators used to monitor biodiversity performance
Select from: ✓ Yes, we use indicators	Select all that apply ☑ Other, please specify :monitoring with experts who prepares reports

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

Legally protected areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Akenerji operates at a safe distance from areas of high biodiversity value and does not have any facilities located near protected or ecologically sensitive zones. Compliance with both national regulations and international biodiversity protection standards is ensured and these distances are verified through ESIA studies and independent analyses. While none of our operations are situated within the defined legally protected areas, we continuously monitor all activities and implements measures that go beyond legal obligations to safeguard species and ecosystems.

UNESCO World Heritage sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Akenerji does not operate within or in close proximity to any UNESCO World Heritage Sites or other internationally protected areas. All power plants are located at safe distances determined in accordance with both national regulations and international protection standards. These distances are verified and documented through Environmental and Social Impact Assessments (ESIA) and independent third-party analyses. In addition to maintaining full compliance with Türkiye's biodiversity conservation laws and global protection requirements, Akenerji goes beyond legal obligations by continuously monitoring its operations to safeguard species, habitats, and ecosystems. This proactive approach ensures that our activities remain environmentally responsible and pose no risk to the outstanding universal value of UNESCO World Heritage Sites.

UNESCO Man and the Biosphere Reserves

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity Select from:

✓ No

(11.4.2) Comment

Akenerji has no operations located within or adjacent to UNESCO Man and the Biosphere Reserves. All of our power generation facilities are sited at distances that meet or exceed both national and international conservation requirements, ensuring that no activities pose a risk to these ecologically significant areas. Site selection and operational practices are supported by Environmental and Social Impact Assessments (ESIA) and independent expert evaluations, which confirm compliance with protective buffer zones. Beyond these regulatory safeguards, Akenerji implements continuous monitoring and biodiversity management practices to preserve natural habitats and ecosystem functions.

Ramsar sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Ramsar Sites are internationally recognized wetlands of critical ecological importance, protected under the Ramsar Convention to conserve biodiversity and maintain vital ecosystem services. Akenerji has no operations located within or near any designated Ramsar Site. All of our facilities are established at safe distances in full compliance with national wetland protection regulations and international conservation requirements. This is verified through Environmental and Social Impact Assessments (ESIA) and independent expert analyses. In addition to meeting legal obligations, Akenerji applies continuous environmental monitoring and implements precautionary measures.

Key Biodiversity Areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Akenerji does not operate in or near to key biodiversity areas. Distances determined in line with both national and international requirements are maintained and this is documented by ESIA and independent analysis reports. Our Company carries out its activities in an environmentally sensitive manner and takes all kinds of measures to protect biodiversity. Akenerji complies with national biodiversity protection laws and international protection requirements, and carries out its activities at a safe distance from areas important for biodiversity. Although our Company does not have any activities in key biodiversity areas, it constantly monitors all its operations for the protection of species and ecosystems beyond the legislation and requirements.

Other areas important for biodiversity

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Akenerji does not operate in close proximity to protected or sensitive areas important for biodiversity. [Fixed row]

C13. Further information & sign of	off
------------------------------------	-----

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

Other environmental information included in your CDP response is verified and/or assured by a third party
Select from: ✓ Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

✓ Climate change

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance – Climate change

✓ Fuel consumption

☑ Renewable Electricity/Steam/Heat/Cooling generation

- ☑ Base year emissions
- ☑ Emissions breakdown by country/area

- ☑ Electricity/Steam/Heat/Cooling generation
- ☑ Electricity/Steam/Heat/Cooling consumption

(13.1.1.3) Verification/assurance standard

Climate change-related standards

✓ ISO 14064-3

(13.1.1.4) Further details of the third-party verification/assurance process

Akenerji's greenhouse gas inventory is verified on an annual basis, covering the full organizational boundary and all emission categories, including Scope 1, Scope 2 and Scope 3. For the reporting period 01.01.2024–31.12.2024, third-party verification was completed to ensure that data collection, calculation methodologies, and reporting practices meet the requirements of the GHG Protocol and ISO 14064-1. The verification was carried out in accordance with the ISO 14064-3 standard at a reasonable assurance level for Scope 1 and Scope 2 emissions and at a limited assurance level for Scope 3 emissions. The verification process covered all facilities and activities under Akenerji's operational control, with no exclusions from the GHG inventory.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Akenerji GHG Verification Statements.pdf

Row 2

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

Water

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Water security

- ☑ Water consumption total volume
- ☑ Water discharges total volumes
- ✓ Water withdrawals total volumes

☑ Water intensities of products and services

- ✓ Water withdrawals volumes by source
- ☑ Water discharges volumes by destination

(13.1.1.3) Verification/assurance standard

Water-related standards

☑ Other water verification standard, please specify: ISO 14046:2014

(13.1.1.4) Further details of the third-party verification/assurance process

Akenerji's corporate water footprint is calculated in full accordance with the ISO 14046 standard and is subject to annual third-party verification and certification at a reasonable assurance level. The verification process covers all data inputs used in the calculation ensuring accuracy, completeness, and full compliance with ISO 14046 requirements. No facilities or data points are excluded, providing transparent and reliable assurance for stakeholders and regulatory disclosures.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Akenerji ISO 14046_Verification Statements.pdf [Add row]

(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

(13.2.1) Additional information

Akenerji maintains a high level of transparency in its sustainability practices by making key environmental and climate-related information publicly available on its corporate website. Stakeholders can access a wide range of documents, including integrated annual reports, CDP disclosures, verified emission reduction certificates, carbon and water footprint verification certificates, and TCFD/TNFD reports. The website also provides information on the Company's approach, commitments, certifications, and relevant updates such as awards and news. https://www.akenerji.com.tr/en/sustainability [Fixed row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

General Manager (CEO) has approved CDP response of Akenerji.

(13.3.2) Corresponding job category

Select from:

✓ Chief Executive Officer (CEO) [Fixed row]

(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Select from:

☑ Yes, CDP may share our Disclosure Submission Lead contact details with the Pacific Institute